
Mining Periodic Behaviors for Moving Objects

Zhenhui Li† Bolin Ding† Jiawei Han† Roland Kays‡ Peter Nye§

† University of Illinois at Urbana-Champaign, Illinois, US
‡ New York State Museum, New York, US

§ New York State Department of Environmental Conservation, New York, US
{zli28, bding3, hanj}@uiuc.edu, rkays@mail.nysed.gov, fwinfo@gw.dec.state.ny.us

ABSTRACT
Periodicity is a frequently happening phenomenon for mov-
ing objects. Finding periodic behaviors is essential to un-
derstanding object movements. However, periodic behav-
iors could be complicated, involving multiple interleaving
periods, partial time span, and spatiotemporal noises and
outliers.

In this paper, we address the problem of mining periodic
behaviors for moving objects. It involves two sub-problems:
how to detect the periods in complex movement, and how to
mine periodic movement behaviors. Our main assumption
is that the observed movement is generated from multiple
interleaved periodic behaviors associated with certain refer-
ence locations. Based on this assumption, we propose a two-
stage algorithm, Periodica, to solve the problem. At the first
stage, the notion of reference spot is proposed to capture the
reference locations. Through reference spots, multiple peri-
ods in the movement can be retrieved using a method that
combines Fourier transform and autocorrelation. At the sec-
ond stage, a probabilistic model is proposed to characterize
the periodic behaviors. For a specific period, periodic be-
haviors are statistically generalized from partial movement
sequences through hierarchical clustering. Empirical stud-
ies on both synthetic and real data sets demonstrate the
effectiveness of our method.

Categories and Subject Descriptors
H.2.8 [Data Management]: Database Aplications - Data
Mining; H.4.0 [Information Systems]: General

General Terms
Algorithms

Keywords
Moving objects, periodic behavior, reference spot, Fourier
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1. INTRODUCTION
With the fast development of positioning technology, mas-

sive amounts of object movement data have been collected
from various moving object targets, such as animals, mobile
devices, vehicles, and climate radars. As moving object data
is widely available, mining and understanding such data has
gained a lot of attention recently. One most common activity
lying in moving objects is the periodic behavior. A periodic
behavior can be loosely defined as the repeating activities
at certain locations with regular time intervals. For exam-
ple, golden eagles start migrating to South America in late
October and go back to Alaska around mid March.

Such periodic behaviors provide an insightful and concise
explanation over the long moving history. For example, ani-
mal movements could be summarized using several daily and
yearly periodic behaviors. Periodic behaviors are also useful
for compressing movement data [12, 17, 4]. Since they are
summarization of movements, we can use them to replace
the original data to save space. Moreover, periodic behav-
iors are useful in future movement prediction [10], especially
for a distant querying time. At the same time, if an object
fails to follow regular periodic behaviors, it could be a signal
of abnormal environment change or an accident.

Raw data of David’s movement

2009−02−05 09:14 (811, 60)
2009−02−05 10:58 (810, 55)
2009−02−05 14:29 (820, 100)

...

...

...

2009−06−12 09:56 (110, 98)
2009−06−12 11:20 (101, 65)
2009−06−12 20:08 (20, 97)
2009−06−12 22:19 (15, 100)

2009−02−05 07:01 (601, 254)

  20:00−8:00 in the dorm
  9:00−18:00 in the office

  14:00−16:00 Tues. and Thurs. in the gym

Periodic Behavior #1

Periodic Behavior #3 
  (Period: week; Time span: Sept. − May)

  (Period: day; Time span: Sept. − May)

  20:00−7:30 in the apartment
  8:00−18:00 in the company
  (Period: day; Time span: June − Aug.)
Periodic Behavior #2 

  13:00−15:00 Mon. and Wed. in the classroom

Periodic behaviors

Figure 1: Interleaving of multiple periodic behav-

iors.

However, mining periodic behaviors from a moving ob-
ject’s long and noisy history data is a challenging problem.
For example, Figure 1 shows the raw movement data of a
student David and the expected periodic behaviors. Based
on manual examination of the raw data (on the left), it is
almost impossible to extract the periodic behaviors (on the
right). And the periodic behaviors are actually quite com-
plicated. There are multiple periods and periodic behaviors
that may interleave with each other. Mining periodic be-
haviors can bridge the gap between raw data and semantic
understanding of the data, which includes following two ma-
jor issues.



First, the periods (i.e., the regular time intervals in a pe-
riodic behavior) are usually unknown. Even though there
are many period detection techniques that are proposed in
signal processing area, such as Fourier transform and auto-
correlation, these methods cannot be directly applied to the
spatiotemporal data. Because the moving object will not re-
peat the movement by appearing at exactly the same point
(in terms of (x, y)) on exactly the same time instance of a
period. Besides, there could be multiple periods existing at
the same time, such as David has one period as “day” and
another as “week”. If we consider the movement sequence as
a whole, the longer period (i.e., week) will have fewer repeat-
ing times than the shorter period (i.e., day). So it is hard
to select a threshold to find all periods. Surprisingly, there
is no previous work that can handle the issue about how to
detect multiple periods from the noisy moving object data.
To the best of our knowledge, there is only one work [1] that
addresses the detection of periods for moving objects. It di-
rectly applies the Fourier transform on moving object data
by transforming a location onto a complex plane. However,
as the toy example we will show in Section 3, this method
does not work in the presence of spatial noise.

Second, even if the periods are known, the periodic be-
haviors still need to be mined from the data because there
could be several periodic behaviors with the same period.
As we can see that, in David’s movement, the same period
(i.e., day) is associated with two different periodic behav-
iors, one from September to May and the other from June
to August. In previous work, Mamoulis et al. [12] studied
the frequent periodic pattern mining problem for a moving
object with a given period. However, the rigid definition
of frequent periodic pattern does not encode the statistical
information. It cannot describe the case such as “David has
0.8 probability to be in the office at 9:00 everyday.” One may
argue that these frequent periodic patterns can be further
summarized using probabilistic modeling approach [18, 14].
But such models built on frequent periodic patterns do not
truly reflect the real underlying periodic behaviors from the
original movement, because frequent patterns are already a
lossy summarization over the original data. Furthermore,
if we can directly mine periodic behaviors on the original
movement using polynomial time complexity, it is unneces-
sary to mine frequent periodic patterns and then summarize
over these patterns.

In this paper, we formulate the periodic behavior min-
ing problem and propose the assumption that the observed
movement is generated from several periodic behaviors asso-
ciated with some reference locations. We design a two-stage
algorithm, Periodica, to detect the periods and further find
the periodic behaviors.

At the first stage, we focus on detecting all the periods in
the movement. Given the raw data as shown in Figure 1,
we use the kernel method to discover those reference loca-
tions, namely reference spots . For each reference spot, the
movement data is transformed from a spatial sequence to a
binary sequence, which facilitates the detection of periods by
filtering the spatial noise. Besides, based on our assumption,
every period will be associated with at least one reference
spot. All periods in the movement can be detected if we
try to detect the periods in every reference spot. At the
second stage, we statistically model the periodic behavior
using a generative model. Based on this model, underlying
periodic behaviors are generalized from the movement using

a hierarchical clustering method and the number of peri-
odic behaviors is automatically detected by measuring the
representation error.

In summary, our major contributions are outlined as fol-
lows.

• We address an important problem in understanding
movement data and formulate this problem as mining
periodic behaviors.

• We propose algorithm Periodica to mine periodic be-
haviors. Periodica is designed in two stages.

• We design a location-based method to effectively de-
tect multiple periods in the movement using the con-
cept of reference spots.

• We statistically model the periodic behavior. A clus-
tering method is proposed to determine the number of
behaviors and mine periodic behaviors.

• Comprehensive experiments are conducted on both real
data and complicated synthetic data. The results demon-
strate the effectiveness of our method.

The rest of the paper is organized as follows. Section 2
formally states the problem and outlines the general frame-
work. Section 3 introduces how to detect periods (stage
1). Section 4 describes the method to discover the periodic
behaviors (stage 2). We report our experimental results in
Section 5, discuss related work in Section 6, and conclude
our study in Section 7.

2. FRAMEWORK OVERVIEW
Let D = {(x1, y1, time1), (x2, y2, time2), . . .} be the origi-

nal movement database for a moving object. The raw data
is linearly interpolated with constant time gap, such as hour
or day. The interpolated sequence is denoted as LOC =
loc1loc2 · · · locn, where loci is a spatial point represented as
a pair (loci.x, loci.y).

Given a location sequence LOC, our problem aims at min-
ing all periodic behaviors. Before defining periodic behavior,
we first define some concepts. A reference spot is a dense
area that is frequently visited in the movement. The set of
all reference spots is denoted as O = {o1, o2, . . . , od}, where
d is the number of reference spots. A period T is a regular
time interval in the (partial) movement. Let ti (1 ≤ i ≤ T )
denote the i-th relative timestamp in T .

A periodic behavior can be represented as a pair 〈T,P〉,
where P is a probability distribution matrix. Each entry
Pik(1 ≤ i ≤ d, 1 ≤ k ≤ T ) of P is the probability that the
moving object is at the reference spot oi at relative times-
tamp tk. The formal statistical modeling of periodic behav-
ior will be given in Section 4.1.

For example, for T = 24 (hours), David’s daily periodic
behavior (Figure 1 involved with 2 reference spots (i.e., “of-
fice” and “dorm”) could be represented as (2 + 1)× 24 prob-
ability distribution matrix, as shown Table 1. This table
is an intuitive explanation of formal output of periodic be-
haviors, which is not calculated according to specific data
in Figure 1. The probability matrix encodes the noises and
uncertainties in the movement. It statistically characterize
the periodic behavior such as “David arrives at office around
9:00.”



8:00 9:00 10:00 · · · 17:00 18:00 19:00

dorm 0.9 0.2 0.1 · · · 0.2 0.7 0.8
office 0.05 0.7 0.95 · · · 0.75 0.2 0.1

unknown 0.05 0.1 0.05 · · · 0.05 0.1 0.1

Table 1: A daily periodic behavior of David.

DEFINITION 1 (Periodic Behavior Mining). Given
a length-n movement sequence LOC, our goal is to mine all
the periodic behaviors {〈T,P〉}.

Since there are two subtasks in the periodic behavior min-
ing problem, detecting the periods and mining the peri-
odic behaviors. We propose a two-stage algorithm Periodica,
where the overall procedure of the algorithm is developed in
two stages and each stage targets one subtask.

Algorithm 1 Periodica

INPUT: A movement sequence LOC = loc1loc2 · · · locn.
OUTPUT: A set of periodic behaviors.
ALGORITHM:

1: /* Stage 1: Detect periods (Section 3)*/
2: Find reference spots O = {o1, o2, · · · , od};
3: for each oi ∈ O do

4: Detect periods in oi and store the periods in Pi;
5: Pset ← Pset ∪ Pi;
6: /* Stage 2: Mine periodic behaviors (Section 4) */
7: for each T ∈ Pset do

8: OT = {oi|T ∈ Pi};
9: Construct the symbolized sequence S using OT ;

10: Mine periodic behaviors in S.

Algorithm 1 shows the general framework of Periodica. At
the first stage, we first find all the reference spots (Line 2)
and for each reference spot, the periods are detected (Line
3∼5). Then for every period T , we consider the reference
spots with period T and further mine the corresponding pe-
riodic behaviors (Line 7∼10).

3. DETECTING PERIOD
In this section, we will discuss how to detect periods in

the movement data. This includes two subproblems, namely,
finding reference spots and detecting periods on binary se-
quence generated by these spots. First of all, we want to
show why the idea of reference spots is essential for period
detection. Consider the following example.

We generate a movement dataset simulating an animal’s
daily activities. Every day, this animal has 8 hours staying
at the den and the rest time going to some random places
hunting for food. Figure 2(a) shows its trajectories. We first
try the method introduced in [1]. The method transforms lo-
cations (x, y) onto complex plane and use Fourier transform
to detect the periods. However, as shown in Figure 2(b) and
Figure 2(c), there is no strong signal corresponding to the
correct period because such method is sensitive to the spa-
tial noise. If the object does not follow more or less the same
hunting route every day, the period can hardly be detected.
However, in real cases, few objects repeat the exactly same
route in the periodic movement.

Our key observation is that, if we view the data from the
den, the period is easier to be detected. In Figure 2(d), we
transform the movement into a binary sequence, where 1
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(b) Fourier transform on
x + yi.
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(c) Fourier transform on
y + xi.
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(d) Binary sequence as
viewed from the den.

Figure 2: Illustration of the importance to view

movement from reference spots.

represents the animal is at den and 0 when it goes out. It
is easy to see the regularity in this binary sequence. Our
idea is to find some important reference locations, namely
reference spots , to view the movement. In this example, the
den serves as our reference spot.

The notion of reference spots has several merits. First, it
filters out the spatial noise and turns the period detection
problem from a 2-dimensional space (i.e., spatial) to a 1-
dimensional space (i.e., binary). As shown in Figure 2(d),
we do not care where the animal goes when it is out of
the den. As long as it follows a regular pattern going out
and coming back to the den, there is a period associated
with the den. Second, we can detect multiple periods in
the movement. Consider the scenario that there is a daily
period with one reference spot and a weekly period with
another reference spot, it is possible that only period “day”
is discovered because the shorter period will repeat more
times. But if we view the movement from two reference
spots separately, both periods can be individually detected.
Third, based on the assumption that each periodic behavior
is associated with some reference locations, all the periods
can be found through reference spots.

The rest of this section will discuss in details how to find
reference spots and detect the periods on the binary se-
quence for each reference spot.

3.1 Finding Reference Spots
Since an object with periodic movement will repeatedly

visit some specific places, if we only consider the spatial in-
formation of the movement, reference spots are those dense
regions containing more points than the other regions. Note
that the reference spots are obtained for individual object.
While computing the density for each location in a contin-
uous space is computationally expensive, we discretize the
space into a regular w × h grid and compute the density
for each cell. The grid size is determined by the desired
resolution to view the spatial data.

To estimate the density of each cell, we adapt a popu-



lar kernel method [16], which is designed for the purpose of
finding home ranges of animals. If an animal has frequent
activities at one place, this place will have higher probabil-
ity to be its home. This actually aligns very well with our
definition of reference spots.

For each grid cell c, the density is estimated using the
bivariate normal density kernel,

f(c) =
1

nγ2

n
X

i=1

1

2π
exp(−

|c− loci|
2

2γ2
),

where |c − loci| is the distance between cell c and location
loci. In addition, γ is a smoothing parameter which is de-
termined by the following heuristic method [16],

γ =
1

2
(σ2

x + σ
2
y)

1

2 n
− 1

6 ,

where σx and σy are the standard deviations of the whole
sequence LOC in its x and y-coordinates, respectively. The
time complexity for this method is O(w · h · n).

After obtaining the density values, an reference spot can
be defined by a contour line on the map, which joins the
cells of the equal density value, with some density threshold.
The threshold can be determined as the top-p% density value
among all the density values of all cells. The larger the value
p is, the bigger the size of reference spot is. In practice, p

can be chosen based on prior knowledge about the size of the
reference spots. In many real applications, we can assume
that the reference spots are usually very small on a large map
(e.g. within 10% of whole area). So, by setting p% = 15%,
most parts of reference spots should be detected with high
probability. Even though it could introduce a small amount
of additional noise at the same time, our period detection is
robust in terms of noise as shown in experiment, specifically
in Figure 10.

EXAMPLE 1 (Running Example). We will use a run-
ning example throughout the paper to illustrate our methods.
Assume that a bird stays in a nest for half a year and moves
to another nest staying for another half year. At each nest,
it has a daily periodic behavior of going out for food during
the daytime and coming back to the nest at night.

As shown in Figure 3, the two small areas (spot #2 and
spot #3) are the two nests and the bigger region is the food
resource (spot #1). Figure 3(a) shows the density calculated
using the kernel method. The grid size is 100 × 100. The
darker the color is, the higher the density is. Figure 3(b)
is the reference spots identified by contour using top-15%
density value threshold.

3.2 Periods Detection on Binary Sequence
Given a set of reference spots, we further propose a method

to obtain the potential periods within each spot separately.
Viewed from a single reference spot, the movement sequence
now can be transformed into a binary sequence B = b1b2 . . . bn,
where bi = 1 when this object is within the reference spot at
timestamp i and 0 otherwise. In discrete signal processing
area, to detect periods in a sequence, the most popular meth-
ods are Fourier transform and autocorrelation, which essen-
tially complement each other in the following sense, as dis-
cussed in [13]. On one hand, Fourier transform often suffers
from the low resolution problem in the low frequency region,
hence provides poor estimation of large periods. Also, the
well-known spectral leakage problem of Fourier transform
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(a) Density map calculated by kernel
method.
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(b) Reference spots defined by contours.

Figure 3: Finding reference spots.

tends to generate a lot of false positives in the periodogram.
On the other hand, autocorrelation offers accurate estima-
tion for both short and large periods, but is more difficult to
set the significance threshold for important periods. Conse-
quently, [13] proposed to combine Fourier transform and au-
tocorrelation to find periods. Here, we adapt this approach
to find periods in the binary sequence B.

In Discrete Fourier Transform (DFT), the sequence B =
b1b2 . . . bn is transformed into the sequence of n complex
numbers X1, X2, . . . , Xn. Given coefficients X, the peri-
odogram is defined as the squared length of each Fourier
coefficient: Fk = ‖Xk‖

2. Here, Fk is the power of frequency
k. In order to specify which frequencies are important, we
need to set a threshold and identify those higher frequencies
than this threshold.

The threshold is determined using the following method.
Let B′ be a randomly permutated sequence from B. Since
B′ should not exhibit any periodicities, even the maximum
power does not indicate the period in the sequence. There-
fore, we record its maximum power as pmax, and only the
frequencies in B that have higher power than pmax may cor-
respond to real periods. To provide a 99% confidence level
on what frequencies are important, we repeat the above ran-
dom permutation experiment 100 times and record the max-
imum power of each permutated sequence. The 99-th largest
value of these 100 experiments will serve as a good estimator
of the power threshold.

Given that Fk is larger than the power threshold, we still
need to determine the exact period in the time domain, be-
cause a single value k in frequency domain corresponds to
a range of periods [n

k
, n

k−1
) in time domain. In order to do
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Figure 4: Finding periods.

this, we use circular autocorrelation, which examines how
similar a sequence is to its previous values for different τ

lags: R(τ) =
Pn

i=1
bτ bi+τ .

Thus, for each period range [l, r) given by the periodogram,
we test whether there is a peak in {R(l), R(l +1), . . . , R(r−
1)} by fitting the data with a quadratic function. If the
resulting function is concave in the period range, which indi-
cates the existence of a peak, we return t∗ = arg maxl≤t<r R(t)
as a detected period. Similarly, we employ a 99% confidence
level to eliminate false positives caused by noise.

EXAMPLE 2 (Running Example (cont.)). The pe-
riodogram of reference spot #2 is shown in Figure 4(a).
The red dashed line denotes the threshold of 99% confidence.
There are two points P1 and P2 that are above the threshold.
In Figure 4(b), P1 and P2 are mapped to a range of periods.
We can see that there is only one peak, P1, corresponding
to T = 24 on the autocorrelation curve. This suggests the
existence of a period of 1 day in the movement data.

Discrete Fourier Transform can be executed in O(n log n)
time using Fast Fourier Transform algorithm (FFT). And
since autocorrelation is a formal convolution which can also
be solved by FFT, its complexity is also O(n log n). So, the
overall time complexity of detecting periods in sequence B

is O(n log n).

4. MINING PERIODIC BEHAVIORS
After obtaining the periods for each reference spot, now

we study the task how to mine periodic behaviors. We will
consider the reference spots with the same period together
in order to obtain more concise and informative periodic be-
haviors. But, since a behavior may only exist in a partial
movement, there could be several periodic behaviors with
the same period. For example, there are two daily behav-
iors in David’s movement. One corresponds to the school
days and the other one occurs during the summer. However,
given a long history of movement and a period as a “day”,
we actually do not know how many periodic behaviors exist
in this movement and which days belong to which periodic

behavior. This motivates us to use a clustering method. Be-
cause the “days” that belong to the same periodic behavior
should have the similar temporal location pattern. We pro-
pose a generative model to measure the distance between
two “days”. Armed with such distance measure, we can fur-
ther group the “days” into several clusters and each cluster
represents one periodic behavior. As in David’s example,
“school days” should be grouped into one cluster and “sum-
mer days” should be grouped into another one.

In this section, we will formally present the technique to
mine periodic behaviors. Since every period in the move-
ment will be considered separately, the rest of this section
will focus on one specific period T .

4.1 Modeling Periodic Behaviors
First, we retrieve all the reference spots with period T . By

combining the reference spots with the same period together,
we will get a more informative periodic behaviors associated
with different reference spots. For example, we can sum-
marize David’s daily behavior as “9:00∼18:00 at office and
20:00∼8:00 in the dorm”. We do not consider combining two
different periods in current work.

Let OT = {o1, o2, . . . , od} denote reference spots with pe-
riod T . For simplicity, we denote o0 as any other locations
outside the reference spots o1, o2, . . . , od. Given LOC =
loc1loc2 · · · locn, we generate the corresponding symbolized
movement sequence S = s1s2 . . . sn, where si = j if loci is
within oj . S is further segmented into m = ⌊ n

T
⌋ segments1.

We use Ij to denote the j-th segment and tk (1 ≤ k ≤ T )
to denote the k-th relative timestamp in a period. I

j
k = i

means that the object is within oi at tk in the j-th segment.
For example, for T = 24 (hours), a segment represents a
“day”, t9 denotes 9:00 in a day, and I5

9 = 2 means that the
object is within o2 at 9:00 in the 5-th day. Naturally, we may
use the categorical distribution to model the probability of
such events.

DEFINITION 2 (Categorical Distribution Matrix).
Let T = {t1, t2, . . . , tT } be a set of relative timestamps, xk

be the categorical random variable indicating the selection of
reference spot at timestamp tk. P = [p1, . . . ,pT ] is a cate-
gorical distribution matrix with each column pk = [p(xk =
0), p(xk = 1), . . . , p(xk = d)]T being an independent categor-

ical distribution vector satisfying
Pd

i=0
p(xk = i) = 1.

Now, suppose I1, I2, . . ., Il follow the same periodic be-
havior. The probability that the segment set I =

Sl

j=1
Ij is

generated by some distribution matrix P is

P (I|P) =
Y

Ij∈I

T
Y

k=1

p(xk = I
j
k).

According to maximum likelihood estimation (MLE), the
best generative model can be defined as the optimal solution
to the following log likelihood maximization problem:

max
P

n

L(P|I) = log P (I|P) =
X

Ij∈I

T
X

k=1

p(xk = I
j
k)

o

. (1)

The well-known solution to (1) is

p(xk = i) =

P

Ij∈I 1
I

j
k
=i

|I|
, (2)

1If n is not a multiple of T , then the last (n mod T ) posi-
tions are truncated.



where 1A is the indicator function associated with the event
A. That is, p(xk = i) is the relative frequency of reference
spot oi at tk over all segments in I.

Now, we formally define the concept of periodic behavior.

DEFINITION 3 (Periodic Behavior). Let I be a set
of segments. A periodic behavior over all the segments in I,
denoted as H(I), is a pair 〈T,P〉. T is the period and P is
a probability distribution matrix learned through Eq.(2). We
further let |I| denote the number of segments covered by this
periodic behavior.

4.2 Discovery of Periodic Behaviors
With the definition of periodic behaviors, we are able to

estimate periodic behaviors over a set of segments. Now
given a set of segments {I1, I2, . . . , Im}, we need to discover
which segments are generated by the same periodic behavior.
Suppose there are K underlying periodic behaviors, each of
which exists in a partial movement, the segments should be
partitioned into K groups so that each group represents one
periodic behavior.

A potential solution to this problem is to apply some clus-
tering methods. In order to do this, a distance measure
between two periodic behaviors needs to be defined. Since
a behavior is represented as a pair 〈T,P〉 and T is fixed,
the distance should be determined by their probability dis-
tribution matrices. Further, a small distance between two
periodic behaviors should indicate that the segments con-
tained in each behavior are likely to be generated from the
same periodic behavior.

Several measures between the two probability distribu-
tion matrices P and Q can be used to fulfill these require-
ments. Here, since we assume the independence of variables
across different timestamps, we propose to use the well-
known Kullback-Leibler divergence as our distance measure:

KL(P‖Q) =
T

X

k=1

d
X

i=0

p(xk = i) log
p(xk = i)

q(xk = i)
.

When KL(P‖Q) is small, it means that the two distribution
matrices P and Q are similar, and vice versa.

Note that KL(P‖Q) becomes infinite when p(xk = i) or
q(xk = i) has zero probability. To avoid this situation, we
add to p(xk = i) (and q(xk = i)) a background variable u

which is uniformly distributed among all reference spots,

p(xk = i) = (1− λ)p(xk = i) + λu, (3)

where λ is a small smoothing parameter 0 < λ < 1.
To further understand from a statistical point of view why

this is a good choice of distance measure for our problem,
let us return to our generative model. Recall that I is the
set of segments generated by P, then KL(P‖Q) can be de-

composed as

KL(P‖Q) =

T
X

k=1

d
X

i=0

p(xk = i) log p(xk = i)

−

T
X

k=1

d
X

i=0

p(xk = i) log q(xk = i)

= −H(P)−

T
X

k=1

d
X

i=0

P

Ij∈I 1
I

j
k
=i

|I|
log q(xk = i)

= −H(P)−
1

|I|

X

Ij∈I

T
X

k=1

log q(xk = I
j
k)

= −H(P)−
1

|I|
log P (I|Q),

where H(P) is the entropy of P and can be regarded as a
constant in our problem. Thus, the KL-divergence measures
how likely the segment set I can be generated by the dis-
tribution matrix Q. In our clustering algorithm, among all
possible choices of Q, we simply select the one that maxi-
mizes the likelihood P (I|Q).

Now, suppose we have two periodic behaviors, H1 = 〈T,P〉
and H2 = 〈T,Q〉. We define the distance between these two
behaviors as

dist(H1,H2) = KL(P‖Q).

Suppose there exist K underlying periodic behaviors, there
are many ways to group the segments into K clusters with
the distance measure defined. However, the number of un-
derlying periodic behaviors (i.e., K) is usually unknown. So
we propose a hierarchical agglomerative clustering method
to group the segments while at the same time determine the
optimal number of periodic behaviors. At each iteration of
the hierarchical clustering, two clusters with the minimum
distance are merged. We use a representation error to mon-
itor the cluster quality. When the number of clusters turns
from k to k − 1, if the representation error increases dra-
matically, this indicates that k could be the correct number
of periodic behaviors. We will first describe the clustering
method as Algorithm 2 assuming K is given. The method
to select optimal K is introduced in Section 4.3.

Algorithm 2 Mining periodic behaviors.

INPUT: symbolized sequence S, period T , number of clus-
ters K.
OUTPUT: K periodic behaviors.
ALGORITHM:

1: segment S into m segments;
2: initialize k = m clusters, each of which has one segment;
3: compute the pairwise distances among C1, . . . , Ck, dij =

dist(H(Ci),H(Cj));
4: while (k > K) do

5: select dst such that s, t = arg mini,j dij ;
6: merge clusters Cs and Ct to a new cluster C;
7: calculate the distances between C and the remaining

clusters;
8: k = k − 1;
9: return {H(Ci), 1 ≤ i ≤ K}.

Algorithm 2 illustrates the hierarchical clustering method.
It starts with m clusters (Line 1). A cluster C is defined as a



collection of segments. At each iteration, two clusters with
the minimum distance are merged (Line 4∼8). When two
clusters are merged, the new cluster inherits the segments
that owned by the original clusters Cs and Ct. It has a newly
built behavior H(C) = 〈T,P〉 over the merged segments,
where P is computed by the following updating rule:

P =
|Cs|

|Cs|+ |Ct|
Ps +

|Ct|

|Cs|+ |Ct|
Pt. (4)

Finally, K periodic behaviors are returned (Line 9).
It takes O(T · d) to compute the distance between two

behaviors, where d is the number of reference spots. The
number of iterations is O(m). At each iteration, it takes
O(m log m) to find the minimum pair and O(m · T · d) to
compute the distances between the newly merged cluster
with other clusters. In summary, the complexity of the
clustering algorithm is O(m · (m · T · d + m · log m)) =
O(m2 · T · d + m2 · log m).
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(a) P of periodic behavior #1
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(b) P of periodic behavior #2

Figure 5: Periodic behaviors.

EXAMPLE 3 (Running Example (cont.)). There are
two periodic behaviors with period T = 24 (hours) in the
bird’s movement. Figure 5 shows the probability distribution
matrix for each discovered periodic behavior. A close look at
Figure 5(a) shows that at time 0:00∼8:00 and 22:00∼24:00,
the bird has a high probability being at reference spot #2,
which is a nest shown in Figure 3(b). At time 12:00∼18:00,
it is very likely to be at reference spot #1, which is the food
resources shown in Figure 3(b). And at the time 9:00∼11:00,
there are also some probability that the bird is at reference
spot #1 or reference spot #2. This indicates the bird goes
out of the nest around 8:00 and arrives at the food resources
place around 12:00. Such periodic behaviors well represent
the bird’s movement and truly reveal the mechanism we em-
ployed to generate this synthetic data.

4.3 Number of Periodic Behaviors
In the clustering algorithm, K represents the number of

periodic behaviors in the movement sequence. Since it is

unknown how many periodic behaviors are in the movement,
it is important to find the right way to pick the appropriate
parameter K.

Ideally, during the hierarchical agglomerative clustering,
the segments generated from the same behavior should be
merged first because they have smaller KL-divergence dis-
tance. Thus, we judge a cluster is good if all the segments in
the cluster are concentrated in one single reference spot at a
particular timestamp. Hence, a natural representation error
measure to evaluate the representation quality of a cluster
is as follows. Note that here we exclude the reference spot
o0 which essentially means the location is unknown.

DEFINITION 4 (Representation Error). Given a
set of segments C = {I1, I2, . . . , I l} and its periodic behavior
H(C) = 〈T,P〉, the representation error is,

E(C) =

P

Ij∈C

PT

i=1
1

I
j
i
6=0
· (1− p(xi = I

j
i ))

P

Ij∈C

PT

i=1
1

I
j
i
6=0

.

At each iteration, all the segments are partitioned into k

clusters {C1, C2, . . . , Ck}. The overall representation error
at current iteration is calculated as the mean over all clus-
ters,

Ek =
1

k

k
X

i=1

E(Ci).

During the clustering process, we monitor the change of Ek.
If Ek exhibits a dramatical increases comparing with Ek−1, it
is a sign the newly merged cluster may contain two different
behaviors and k − 1 is likely to be a good choice of K. The
degree of such change can be observed from the derivative
of E over k, ∂E

∂k
. Since a sudden increase of E will result

in a peak in its derivative, we can find the optimal K as
K = arg maxk

∂E
∂k

.
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Figure 6: Representation error.

EXAMPLE 4 (Running Example (cont.)). As we can
see Figure 6, the representation error suddenly increases at
k = 2. This indicates that there are actually two periodic be-
haviors in the movement. This is true because the bird has
one daily periodic behavior at the first nest and later has
another one at the second nest.

5. EXPERIMENT
In this section, we systematically evaluate the techniques

presented in the paper. The language used is C++ and the



experiments are performed on a 2.8 GHz Intel Core 2 Duo
system with 4GB memory. The system ran MAC OS X with
version 10.5.5 and gcc 4.0.1.

In order to test the effectiveness under various scenarios,
we design a generator for moving objects with periodicity
according to a set of parameter values. These parameters
are the length n of the time history (in timestamps), period
T , the probability α for a periodic segment in the object’s
movement to comply with regular movement, the probability
β for the noise for each timestamp in a regular periodic
segment, and the variance σ of normal distribution to add
temporal perturbations to the periodic segment.

Before generating the movement, we first create several
reference spots. Each reference spot is a small circle with
radius ranges from 1% to 5% of the map size. A standard
segment segstd with length T is the movement following the
regular periodic pattern. For example, for T = 24 (hours),
segstd could be designed as 6:00pm∼8:00am at reference
spot A (such as home) and 8:30am ∼ 5:30pm hours at ref-
erence spot B (such as office). Then, the movement of the
object is generated. For every segment seg, we first deter-
mine whether s should be a regular segment or not, given
the probability α.

If seg is a regular segment, the object’s movement is gen-
erated as follows. According to standard segment, suppose
that from timestamp t0 to t1 the object is at reference spot
A, we further perturb t0 and t1 with some normal distri-
bution (i.e., t′0 = N(t0, σ

2), t′1 = N(t1, σ
2)). For all the

experiments, we fix σ = 0.5. Finally, with probability 1−β,
the object is at a random location within the circle of ref-
erence spot A from t′0 to t′1. For other timestamps that are
not confined to any reference spot, a random location is gen-
erated. If seg is an irregular segment, for each timestamp,
a random location is assigned.

5.1 Case Studies
We first conduct some case studies on both synthetic and

real data sets.

5.1.1 A synthetic case with multiple periods
Since the running example has already illustrated periodic

behaviors in partial movement, here we test our algorithm
on a case with multiple periods. Suppose that there are 4
reference spots. Imagine them as “home”, “office”, “gym”,
and “class”. A standard movement segment is generated
as 20:00∼8:00 at home every day; 9:00∼14:00 at office on
weekdays; 15:00∼17:00 at gym on Tuesdays and Thursdays;
15:00∼17:00 at class on Mondays, Wednesdays and Fridays.
Furthermore, we choose n = 8400, α = 0.9 and β = 0.1.

Obs. Spot Home Office Gym Class
Periods (hours) 24 24, 168 168 168

Table 2: Periods detected.

The periods detected for each reference spot are shown in
Table 2. There are two periods detected: 24 (i.e., day) and
168 (i.e., week). It is interesting to see that office has both
24 and 168 as the periods. This is because office is visited
“almost” every day except weekends. So both day and week
are reasonable periods.

There is one daily behavior and one weekly behavior.
Their probability matrices are illustrated in Figure 7. In Fig-
ure 7(a), we can infer that this person leaves home around
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(a) Periodic behavior for T = 24.
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(b) Periodic behavior for T = 168.

Figure 7: Periodic behaviors.

8:00am because the probability starts to drop at 8:00am.
In the weekly movement shown in Figure 7(b), 9:00∼14:00
weekdays, the person stays in the office with high probabil-
ity. Gym is involved with Tuesday and Thursday afternoons
and class is involved with Monday, Wednesday and Friday
afternoons. The behaviors on weekends are unknown.

5.1.2 A bald eagle real case
We now test our method on a real dataset2. The data

contains a 3-year tracking (2006.1∼2008.12) of a bald eagle
in the North America. The data is first linearly interpolated
using the sampling rate as a day.

(a) Raw data of bald eagle
plotted on Google Earth.
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Figure 8: Real bald eagle data.

Figure 8(a) shows the original data of bald eagle using
Google Earth. It is an enlarged area of Northeast in Amer-
ica and Quebec area in Canada. As shown in Figure 8(b),
three reference spots are detected in areas of New York,
Great Lakes and Quebec. By applying period detection to
each reference spot, we obtain the periods for each reference
spots, which are 363, 363 and 364 days, respectively. The
periods can be roughly explained as a year. It is a sign of
yearly migration in the movement.

Now we check the periodic behaviors mined from the move-
ment. Ideally, we want to consider three reference spots to-

2The data set is obtained from www.movebank.org.
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Figure 9: Periodic behaviors of bald eagle.

gether because they all show yearly period. However, we
may discover that the periods are not exactly the same for
all the reference spots. This is a very practical issue. In real
cases, we can hardly get perfectly the same period for some
reference spots. So, we should relax our constraint and con-
sider the reference spots with similar periods together. If
the difference of periods is within some tolerance threshold,
we take the average of these periods and set it as the com-
mon period. Here, we take period T as 363 days, and the
probability matrix is summarized in Figure 9. Using such
probability matrix, we can well explain the yearly migration
behavior as follows.

“This bald eagle stays in New York area (i.e., reference spot
# 1) from December to March. In March, it flies to Great
Lakes area (i.e., reference spot #2) and stays there until the
end of May. It flies to Quebec area (i.e., reference spot #3)
in the summer and stays there until late September. Then it
flies back to Great Lake again staying there from mid October
to mid November and goes back to New York in December.”

This real example shows the periodic behaviors mined
from the movement provides an insightful explanation for
the movement data.

5.2 Performance Evaluation
We further verify the effectiveness of our algorithms with

respect to the two parameters we introduced at the begin-
ning of this section, α and β, on synthetic datasets. Recall
that α represents the proportion of regular segments in the
whole sequence and β indicates the level of random noise.
Again we use our Running Example to generate the synthetic
data. This time, we vary α from 1 to 0.6, and simultane-
ously, we choose β from 0 to 0.5. We test the effectiveness
of the period detection algorithm and the summarization al-
gorithm separately. All experiments are repeated 100 times
and the results are averaged.

For the period detection algorithm, we report the suc-
cess rates in Figure 10(a). Since we know the ground truth
(T = 24), we judge a trial is successful if among all detected
periods, the one with the large correlation value is within
the range [23, 25]. The result suggests that our period de-
tection algorithm is nearly perfect in all cases with α ≤ 0.8.
It is also noticeable that, compared to irregular segments,
our algorithm is more robust to random noise, which may
be caused by the failure of tracking devices or transmission
networks during the data acquisition process. Furthermore,
since irregular segments often reflects the changes of behav-
iors in the movement, the sensitivity to the irregular seg-
ments is also desirable for our algorithm which is designed
for mining periodic behaviors.

For the summarization algorithm, we show in Figure 10(b)
the representation error for K = 10 as defined in Section 4.3.
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(a) Success rate of the period detection al-
gorithm.
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Figure 10: Performance evaluation.

To see the significance of the result, observe that, for exam-
ple, with α = 0.9 and β = 0.1, if we use 10 clusters to sum-
marize all the daily segments of one year, the representation
error is about 0.2. This means that we can obtain compact
high-quality summarization even with moderate amount of
irregularity and noise. This further shows that our algorithm
is indeed able to filter out redundancy between the segments
which are generated by periodic behaviors and therefore re-
veals the true behaviors.

6. RELATED WORK
A number of periodic pattern mining techniques have been

proposed in data mining literature. Han et al. [8, 7] propose
the algorithms for mining frequent partial periodic patterns.
In this problem setting, each timestamp corresponds to a
set of items. The goal is to find the patterns that appear
at least min sup times. Yang et al. [19, 20, 15, 21] pro-
pose a series of works dealing with variations of periodic
pattern mining, such as asynchronous patterns [19], surpris-
ing periodic patterns [20], patterns with gap penalties [21],
and higher level patterns [15]. In [22], it further addresses
the gap requirement problem in biologic sequences. Dif-
ferent from previous works which focus on the categorical
data, Mamoulis et al. [12] detects the periodic patterns for
moving objects. However, all these works are based on the
definition of frequent periodic pattern mining with a strict
min sup threshold. They tend to output a large set of pat-
terns, most of which are slightly different. Besides, frequent



periodic patterns cannot capture the statistical information
as the periodic behaviors. Similar to our definition of pe-
riodic behavior, Indyk et al. [9] studies the problem of of
discovering the most representative trend that repeats itself
every T timestamps. However, they can only discover one
trend for a given period T and such trend covers the whole
time span.

There are also works addressing the automatic period de-
tection problem [9, 19, 11, 2, 3, 5, 6]. [11] and [19] have
developed a similar linear distance-based algorithm for dis-
covering the potential periods regarding the symbols of the
time series. But this method misses some valid periods since
it only considers the adjacent inter-arrivals. In [3], a data
structure, the abbreviated list table (ALT) is proposed to
compute the periods and the pattern. But such period is
based on the threshold of min sup which is not appropriate
in our problem. Indyk et al. [9] develops an O(n log2 n) time
complexity algorithm using sketch approaches to find repre-
sentative trend where n is the length of sequence. But only
one period is detected in the whole sequence. Berberidis et

al. [2] detects the period candidates for each symbol using
autocorrelation. Improved from [2], Elfeky et al. [5] proposes
a more efficient convolution method which considers multi-
ple symbols together while detecting the period. However,
as addressed in Section 3.2, both autocorrelation and con-
volution will detect a large set of period candidates, most of
which are redundant. In [6], a method based on time warp-
ing is proposed, which is robust in the presence of shifting
noise but is less efficient with time complexity O(n3). The
only work that discusses the period detection for moving
object is [1]. However, as we illustrated in Section 3.2, this
method is easily affected by the spatial noise.

7. CONCLUSION AND FUTURE WORK
In this paper, we address an important and difficult prob-

lem: periodic behavior mining for moving objects. We pro-
pose a two-stage algorithm, Periodica. In the first stage,
periods are detected through reference spots using Fourier
transform and autocorrelation. In the second stage, peri-
odic behaviors are statistically summarized using hierarchi-
cal clustering method. Empirically studies show that our
method can deal with both noisy and complicated cases. A
case study on a real data demonstrates the effectiveness of
our method in practice.

While our approach fixes some reference spots using spa-
tial information only, it is interesting to dynamically detect
reference spots integrating with temporal information. This
could give a more precise estimation on the reference loca-
tions. Another important issue is to find periodic behaviors
in the data with the very sparse and inconstant sampling
rate. We consider these as promising future works.
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