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Abstract—Rich location data of mobile users collected from
smartphones and location-based social networking services en-
able us to measure the mobility relationship strength based
on their interactions in the physical world. A commonly-used
measure for such relationship is the frequency of meeting events
(i.e., co-locate at the same time). That is, the more frequently
two persons meet, the stronger their mobility relationship is.
However, we argue that not all the meeting events are equally
important in measuring the mobility relationship and propose
to consider personal and global factors to differentiate meeting
events. Personal factor models the probability for an individual
user to visit a certain location; whereas the global factor models
the popularity of a location based on the behavior of general
public. In addition, we introduce the temporal factor to further
consider the time gaps between meeting events. Accordingly,
we propose a unified framework, called PGT, that considers
personal, global, and temporal factors to measure the strength
of the relationship between two given mobile users. Extensive
experiments on real datasets validate our ideas and show that our
method significantly outperforms the state-of-the-art methods.

Keywords-mobility; relationship strength; spatiotemporal; so-
cial computing

I. INTRODUCTION

Rapid advances in positioning technology and popularity
of mobile devices facilitate easy collection of rich location
information. Also thanks to Web 2.0 technology, many social
media are now available for their users to share opinions,
pictures and even footprints. For example, mobile users can
post geo-tagged microblogs on Twitter, photos with location
information on Flickr, and check-ins on Foursquare. The ever-
growing location data provides us with an opportunity to study
the human behavior in the physical world.

One interesting question is whether we can measure the
mobility relationship between two mobile users based on their
interactions in the physical world (e.g., how often two persons
meet and where and when they meet). In contrast to the
cyber (i.e., online) relationships, the mobility relationships are
measured based on the movement data. Understanding such
a mobility relationship has a profound impact in advancing
social sciences and a great benefit to a number of applications
such as transportation scheduling [1], urban planning [2],
recommendation [3], [4], advertisement targeting [5], privacy
protection [6], and anomaly detection [7].

In this paper, we study the problem of measuring the
mobility relationship strength between two users based on

their location history data.! Conventionally, the mobility re-
lationship has been measured by meeting frequency, i.e., how
often two persons co-locate at the same time. However, we
argue that these meeting events should not be treated equally,
and propose to consider the following factors in weighting the
importance of meeting events.

Personal factor. The same location carries different mean-
ings for different persons. For example, the Times Square
in New York could be a travel destination for a tourist but
also an office neighborhood for a person working there. For
two persons whose offices are located near Times Square, the
number of co-locating events between them could be high,
even though such meeting events do not necessarily indicate
that they know each other. On the other hand, for two persons
who only visit Times Square three times but always co-locate
there at the same time, it is likely that they have a strong
relationship and therefore meet each other there with some
intentions, e.g. for business or get-together. In summary, the
importance of a meeting event needs to consider an individual
user’s probability to visit a certain location, which is termed
as the personal factor in this paper.

Global factor. Different from the personal factor which
considers an individual’s probability to visit a location, the
global factor captures the popularity of a location to the
general public (which can be estimated using all the users
in the dataset). Some locations are frequently visited by many
people, such as the downtown in the city and a big football
stadium, whereas other locations are more specific to only a
few people, such as a private house. In a popular public place,
it is more likely for two strangers to co-locate by coincidence.
Thus, such meeting events are less indicative for a relationship.
In contrast, a meeting event at a private place often indicates
a stronger mobility relationship.

Temporal factor. Temporal factor considers the time gaps
between consecutive meeting events. For example, suppose
two users attended the same football game or traveled on the
same train and they both made several check-ins during that
period. Then, they are likely to have several co-locating events
although they may not know each other. On the other hand,
meeting events which are separated by a long time period

'In this paper, we measure the users’ relationships solely based on their
physical interactions. It is also possible to mine the relationships from other
types of interactions (e.g., phone calls and online communications), but it is
beyond the scope of this paper.



(e.g., 10 days) are less likely to be coincident. Therefore, such
events should have more weights in determining the mobility
relationship strength than events which occurred within a short
time interval (e.g., one hour).

In the literature, meeting frequency has been widely used to
measure the strength of mobility relationship between moving
objects [8], [9], [10], [11], [12]. Recent works [13], [14]
have considered the global factor of a location by using the
entropy to measure its popularity. A meeting event is then
weighted based on the entropy of the meeting location (i.e.,
visited by many different users). However, few works consider
the personal factor and the temporal factor, which are also
important in differentiating meeting events. For example, as
Times Square is a popular location, all the meeting events
there are likely to be treated as coincidences by the global
factor. However, from the viewpoint of the proposed personal
factor, the “popularity” of a location should be interpreted
differently for a New Yorker and a tourist, because a tourist
has a much lower probability visiting there than a New Yorker.
In addition, two consecutive meeting events which occur at
Times Square in the same hour often carry different meanings
than two events which occur in two different weekends. Such
differences can be captured by the proposed personal and
temporal factors.

In this paper, we propose a unified framework, called PGT,
that incorporates all the aforementioned factors to measure
the mobility relationship. The framework consists of two
components. (i) Background modeling — here we extract the
personal background for each user and the global background
for a location from a dataset of mobile users’ location his-
tory. A density-based method is used to model the personal
background and an entropy-based method is used to model
the global background. (ii) Mobility relationship mining — by
incorporating both the personal factor of each user and the
global factor of each location, we determine the weights of
the meeting events and the strength of mobility relationship. In
addition, we further incorporate the temporal factor to penalize
the consecutive meetings in a short time interval and to reward
the sporadic meetings with longer time span.

The major contributions of this paper are as follows. 1. We
study two new and important factors, the personal factor and
the temporal factor, in mobility relationship mining. To the
best of our knowledge, these two factors have not been exam-
ined in the literature. 2. We propose a unified framework to
measure the strength of mobility relationships, which combine
the personal, global, and temporal factors. We show that these
factors complement each other under our framework. 3. We
conduct extensive experiments on real data to demonstrate the
effectiveness of our method. We provide in-depth analyses of
the experiment results and give great insights into the mobility
relationship mining problem.

The remaining of the paper is organized as follows. Sec-
tion II formally states our relationship mining problem and
Section III outlines the general framework of our approach.
Section IV and Section V describe each step in our frame-
work in detail. Section VI reports our experimental results.

Section VII discusses related work. Finally, Section VIII
concludes our study.

II. PROBLEM DEFINITION

Given a location dataset of m users, the location his-
tory of a user ¢ is represented as a sequence of locations
and timestamps: S; = ((loci, %), (lock,t}), ..., (loci, i ),
where each location is a geographic coordinate. Given any two
users ¢ and 7, our goal is to calculate a relationship measure
F};; based on their mobility data, i.e. meeting events.

A meeting event is formed when two users being spatially
close at the same time. Specifically, for a pair of location
records (loc),, i) € S; and (loc),t)) € S;, if the location dis-
tance is less than a distance threshold ¢ and the time difference
is less than a time threshold 7 (i.e., dist(locl, loc)) < & and
|t;, —t}| < 7), this pair of records forms a meeting event. Here,
0 and 7 are two application-dependent parameters and can be
set experimentally. In this paper, we fix 6 = 30(meters) and
7 = 1(hour).

Let E;; = {e1,eq2, -} denote the sequence of meeting
events between users ¢ and j. Each event e contains a location
and a timestamp, e;, = (locy, {1 ), where the values are simply
computed by averaging the locations and timestamps of the
corresponding pair of location records of the two users.

The relationship measure F}; is a function of all the meeting
events between users ¢ and j:

Fi; = G(E;j). (1)

Our goal is therefore to find a discriminative function G
which well differentiates the mobility relationship strength. In
practice, a simple implementation of G could be the frequency
of meeting events (i.e., meeting frequency):

Go(Eij) = |Eijl. )

However, as we discussed before, the meeting frequency treats
meeting events equally, so it is not sufficient as a measure of
the relationship strengths.

III. FRAMEWORK

The mobility relationship strength between a pair of users is
decided by the set of meeting events between them. We argue
that different meeting events contribute differently in determin-
ing the relationship between users. In this paper, we propose
a unified framework to explore three factors (personal, global,
and temporal factors), as shown in Figure 1. The framework
consists of two major components: background modeling and
relationship mining. We first give a high-level overview of
the components here and then discuss the technical details in
Section IV and Section V, separately.

Background Modeling (details in Section IV). In the first
component, we model the backgrounds for each individual
user and for the locations. In particular, as shown in the upper
part of Figure 1, there are two backgrounds: the personal back-
ground and the global background. The background modeling
is independent from Component 2 on relationship mining as
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Fig. 1. The PGT framework for mobility relationship mining.

the background modeling does not look at the meeting events
between a pair of users.

Personal background (Section IV-A). A user often goes to
some places (e.g., his office) much more often than the
other places (e.g., a bookstore), and different locations often
carry different meanings for a specific user. Therefore, it is
important to look into this user’s location history and model
the importance of each place to the user. In this paper, we
call such a model the personal mobility background of the
user. To model the personal mobility background, we propose
to estimate the probability p(i,lock) of a user i visiting any
location locy on the map.

Global background (Section IV-B). In addition to modeling
the personal usage of a location for each individual user, we
also notice that, if we aggregate the location history of all the
users, different locations may exhibit different characteristics,
such as popularity. For example, a shopping center is much
more popular than someone’s home, and thus it is visited by
a much larger number of people. Therefore, it is important
to treat these places differently when inferring the mobility
relationship strength of users. To model the global mobility
background, we capture the popularity g(locy) of a location
locy, using the entropy based on the number of visits by each
user to this location.

Mobility Relationship Mining (details in Section V). In
the second component, we focus on mining the mobility
relationship between a pair of users i and j, using the set of
their meeting events, which are weighted based on the personal
factor and the global factor extracted in the first component. In
addition, we also consider the temporal correlation between the
meeting events in our mobility relationship strength measure.
Personal factor (Section V-A). The personal background has
been modeled as the probability for a user to visit a location.
On the other hand, if a meeting event occurs at some place
where one or both users frequently visit, this event is more
likely to be a coincidence and therefore should carry less
weight. If two users ¢ and j meet at a location they both rarely
visit (e.g., a travel destination or a restaurant far away from

his home and office), they are more likely to be true friends.
Therefore, such meeting event serves as a strong indicator of
their relationship and should be rewarded.

Global factor (Section V-B). The global background has mod-
eled the popularity of a location. If two users meet at a
popular location (e.g., a shopping center) where many people
co-locate, such a meeting event should carry less weight. On
the other hand, a meeting event at a less popular location (e.g.,
a private house) should carry more weight.

Temporal factor (Section V-C). In addition to computing the
personal and global factors for each meeting event, we further
consider the time gaps between two events. The idea is to
penalize the meeting events with very short time gaps (e.g.,
meeting 10 times in a day) and to reward the ones which span
a long period (e.g., meeting once every month for 10 months).

IV. BACKGROUND MODELING

Following the overall framework introduced earlier, in this
section, we detail how to capture the user’s personal prefer-
ence to each location (i.e., the personal background) and the
popularity of a location over the entire population (i.e., the
global background).

A. Modeling Personal Mobility Background

The personal mobility background models the probability
that a user visits a location. The probability for user ¢ to visit
a location [oc can be computed by:

[{(lock,tr) € S; : locy, ~ loc}|
|5l ’

where ~ is the equivalence relation denoting that two elements
are equivalent.

To judge the equivalence relation of two locations, two
methods are frequently used. One is to partition the space
into grids and then judge the equivalence based on their
corresponding grid IDs. Another way is to judge whether two
locations are within a certain threshold. But both methods
pose hard constraints on the equivalence test. Suppose two
geographical records are close to each other, but they just
happen to be partitioned into two different grids or their
distance is slightly larger than the threshold, then they will
not be properly considered in the probability calculation.

To overcome the above issue, we propose a density function
to model the personal mobility background. The proposed
model naturally incorporates the distances from any point to
all the recorded locations without using any hard constraint.
Specifically, for a location loc; on the map, we model its
density with respect to user ¢ by considering the distances
between loc;, and all the recorded locations of user i:

>

(loci ti)€S;

p(i,loc) = 3)

p(i,locg) = exp(—cq - dist(loc, locf]))/|5i|, )

where ¢4 is a parameter and p(i,locy) is the density of
location. Although p(i,loc) is not a probability value but
a density value, it captures the same semantics as the user’s
probability to visit a place. For example, if a user visits loc



less frequently, then loc;, must be far away from most of the
locations visited by user ¢ and thus has a low density.

In our density model, the parameter c; determines how
fast the impact (or correlation) of a recorded location on its
neighborhood falls as the distance increases. In practice, the
impact of one location on another location is closely related
to human’s actual mobility. Intuitively, two locations should
have a big impact on each other if they are within walking
distances (< 1km), and have a near-zero impact if driving is
required (> 5km). We further examine the sensitivity of our
method to the parameter ¢4 in Section VI-C.

B. Modeling Global Mobility Background

The global background captures the location popularity
inferred from all the mobile users. If a location is frequently
visited by a large number of mobile users, it could be a public
place, such as a tourist spot or a train station. Meeting events
at such locations are often less indicative of the strength of
mobility relationship. On the other hand, if two people meet
at a less popular location, such as a private house, they are
more likely to have a real relationship.

To model the popularity of a place, the location entropy
is proposed in [15] and also adopted in recent work [14].
Specifically, let S;(locy) be the set of location records of user
1 visiting location locg,

Si(locy) = {(locz,té) €S locfl ~loc}, ®)

where condition locfl = locy can be judged either by the
location IDs or by the distance between two locations. Then,
the probability for user ¢ to visit location locy, is

P(i,lock) = |Si(lock)|/ > |Si(lock)|. (6)
K2

Note that the probability P(i,locy) is different from the
density function p(,locy) in our personal background model.
Here, P(i,loc) is the ratio of user ¢’s visits to location loc
over all the visits from the entire population, whereas p(i, loc)
captures the ratio of one user’s visits to a location over the size
of his own location history.

The Shannon entropy of a location loci can be estimated
using the probability vector of all users visiting this location:

> @)

i:P(i,locy ) #0

g(locg) = — P(i,locy) - log P(i,locy,).

Here, a low entropy implies that a location is visited by
few users and a high entropy indicates that a location is
visited by many different users. For example, if a location
is visited by only one user, the entropy of this location is
g(lock) = —1log1 = 0. Meanwhile, if the location is visited
by all the users with an equal probability, we then have
gllock) = — X1y Llog L =log(n).
V. MINING MOBILITY RELATIONSHIP

In this section, we focus on measuring the relationship
strength between two users ¢ and j. As discussed in Section II,
the relationship strength is a function G(E;;) of the set of
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Fig. 2. Comparison of the cumulative distribution functions of various
weights for friend and non-friend pairs. (a) Average personal weight. (b)
Maximum personal weight. (c) Combination of personal and global weights.
(d) Combination of personal, global, and temporal correlation weights. The
bigger the area between the two curves is, the more effective the measure is
in differentiating friends and non-friends.

meeting events E;; = {e1, ez, -+ }. We will consider both
personal factor and global factor in weighting the meeting
events. In addition, we will incorporate the temporal corre-
lations between the events into function G(E;;).

A. Personal Factor

Given the density model of each user, we aim to determine
the significance of a meeting event e; between users ¢ and
j at location loc. As we mentioned before, if they meet at
a place where they frequently visit, then this meeting event
is likely to happen by chance; if two people meet at a place
where they rarely visit, then they are likely to have a real
relationship. Therefore, for a meeting event e, € E;j, we
define the personal factor weight of this meeting event as
follows:

®)

Accordingly, for the set of meeting events E;; between users
1 and j, we can calculate their relationship strength as follows:

Gi(Eij) = Y whi(er) = x |Ey, ©)

ek GEi]‘

w?; (ex) = —log(p(i, lock) - p(j, loc)).

where E’;j is the average weight across all meeting events.
To verify the effectiveness of G1(E;;) in differentiating
mobility relationship, we plot the cumulative distribution func-
tion (CDF) of wj; for all the friend and non-friend pairs in
Figure 2(a) using the Gowalla dataset (see Section VI for
detailed descriptions of the dataset). Interestingly, we see that
two curves almost overlap, which indicates that the average
personal weight does not work as well as we expected in

separating the friend and non-friend pairs. In other words, it



is difficult to use (G; to differentiate the friend and non-friend
pairs in the dataset.

This observation motivates us to further look into the
behaviors of the friend pairs, and we realize that many friend
pairs do go to places where they rarely visit to meet each
other. However, they may also meet at locations where they
visit a lot, like a school, an office or a restaurant. By using
the average weight in our strength measure, we over penalize
the meeting events at rarely visited locations.

Inspired by the above discussion, we propose to explore
maximum personal weight over all the meeting events instead,
and revise our relationship strength measure accordingly:

GQ(Eij) = Imax {U}Z(ek)} X |Elj| (10)
er€E;;

Figure 2(b) shows the CDF curves of the maximum weight
for friend and non-friend pairs. Compared with Figure 2(a),
we can see that the difference between the two curves in
Figure 2(b) becomes much larger. In particular, 60% of friends
have weights higher than 18 and only 5% of non-friends have
weights higher than the same number. The largest distribution
gap in Figure 2(b) is 55%. This illustrates that the maximum
personal background weight is indeed an effective measure of
friend relationships.

B. Global Factor

For a meeting event ey, = {locg,tr}, we now consider the
factor of the global background. Generally, we wish to reward
the meeting events at private locations with low entropies (i.e.,
small g(loc) value) and penalize those at public locations
high entropies (i.e., large g(locy) value). Following [14], we
use the exponential function of the location entropy as the
global background weight of an event:

wi;(ex) = exp(—g(locy)). (11)

One issue with this global factor is that it requires location
history data from a large population in order to obtain an
accurate estimation of the location popularity. In contrast, the
personal factor can be computed from the location history data
of two users.

To combine the weights from personal factor and from
global factor, we replace the meeting frequency |E;;| in
Eq. (10) with the sum of global background weights over all
meeting events to obtain a new measure as follows:

Gs(Eyj) = H;%X{wf} (er)} x > w;(ex).

ek

12)

Here, we choose the product of the personal and global
weights rather than the sum because the weights of these two
factors have very different ranges of values. Compared with
the sum, the product is much less sensitive to the difference
in scale.

In Figure 2(c), we show the CDF curves for the combination
of personal and global weights. Compared with Figure 2(b),
the difference between the two curves in Figure 2(c) is even
bigger. The largest gap increases to 61% from 55%, which
indicates that combining these two factors helps us further
differentiate the friend and non-friend pairs.

C. Temporal Correlation of Meeting Events

Another important factor in relationship mining is to con-
sider the correlation of the meeting events. Specifically, an
event e in the set of meeting events F;; between users ¢
and j should be penalized if there are other events that are
temporally close to event e;. The strength of the temporal
link between events e, and e, can also be modeled by an
exponential function with respect to the time difference:

lr(ek,ep) = exp(—ci- |ty —tp |). (13)

Similar to the spatial parameter c4, the parameter ¢; should
be chosen based on the correlations of real meeting events.
Intuitive, two events that occur in the same hour are often
highly correlated, whereas two events that are separated by
many days should be considered as independent events.

Next, we define the temporal correlation weight of event ey,
based on its temporal link to the previous event:

wﬁj(ek) = { i —lr(eg,ex—1), k i 1

k=1 (14)

)

Finally, we adjust our relationship strength measure by
incorporating the temporal correlation weight as follows:

G(E;j;) = Hé%}{{w% (er)} % Z (wfj (er) % wﬁj(ek)). (15)

Figure 2(d) plots the CDF curves of our final relationship
measure which combines the personal weight, the global
weight and the temporal correlation weight. Compared with
Figure 2(c), Figure 2(d) shows an even bigger gap (a maximum
distribution gap of 72%) between the two curves, suggesting
that the combination can best differentiate the friend and non-
friend pairs in practice.

VI. EXPERIMENTS

In this section, we present a comprehensive performance
study of the proposed method on two real datasets. All the
experiments are conducted on a 3.4 GHz Intel Core i7 system
with 16 GB memory.

A. Dataset and Metrics

We use two different datasets collected from two location-
based social networking services, Gowalla and Brightkite [16].
Users share their locations by checking in at places. The
check-in records of Gowalla dataset are collected from Febru-
ary 2009 to October 2010, whereas the Brightkite dataset is
collected from April 2008 to October 2010. Both datasets
share the same format: (user ID, latitude, longitude, times-
tamp, location ID). Each dataset also contains a social net-
work of friendships, which serves as the ground truth in our
evaluation.? Some statistics of these two datasets are given in
Table L.

In this paper, we conduct both quantitative evaluations and
case studies to verify the effectiveness of our method. For

2However, it is worth noting that the cyber (i.e., online) relationship may not
serve as the perfect ground truth for the physical (i.e., mobility) relationship.
We will discuss some examples using case studies in Section VI-D.
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TABLE I
DATASET STATISTICS
Gowalla | Brightkite
No. of users 107,092 58,228
No. of friend pairs 950,327 214,078
No. of check-ins 6,442,890 | 4,491,143
Average check-ins per user 60 78

the former, we use the precision-recall curve to systemati-
cally examine each component in our framework and make
comparison with the state-of-the-art method. Let G denote the
set of ground truth friend pairs in the dataset, and () denote the
set of friend pairs reported by any method under a particular
experiment setting, the precision and recall of the method are
then defined as follows:
GnQl L 1GNQ)

—_ ecall = —————.

Q |G|

To further compare different methods under various experi-
ment settings, we adopt the area under the curve (AUC) value,
which is the area under a given precision-recall curve. Finally,
in order to show how to select the optimal PGT value as cutoff
threshold, we also employ the F1 measure, which is

Precision = (16)

Precision - Recall

F1=2 a7

" Precision + Recall’
B. Effectiveness of Our Method

In this section, we systematically study the performance
of each factor and the combinations as well. The following
variations are considered:

« Frequency: |E;;| (meeting frequency).

o Personal: max,, cp, {w];(ex)} x| E;j| (meeting frequency
weighted by the personal factor only).

o Global: i wy;(ex) (meeting frequency weighted by
the global factor only).

« Temporal: Z€k6 B w’z?j (meeting frequency weighted by
the temporal correlation only).

o Personal + Global: max,, {w};(ex)}x} . wf;(ex) (meet-
ing frequency weighted by both personal factor and global
factor).

o Personal + Global + Temporal:

max, {wy;(ex)} X
Den (wfj (ex) x wi (ek)) (the PGT model which considers
all the factors).

To gain insights into the datasets, in Figure 3(a) and 3(b)
we plot the ranked number of user check-ins in both datasets.
As shown, the number of check-ins for each user is highly
skewed and both distributions have long tails. In particular,
only 1,500 out of the 100,000 users in the Gowalla dataset
have more than 500 check-ins. Similar phenomenon can be
seen in the Brightkite dataset. This indicates that a small
portion of users use the services very frequently, but most of
the users are quite inactive. So one important question here is
how the performance of our method is affected by the different
degrees of user activeness.

To answer this question, we extract the top-K users (ranked
by the number of check-ins) in the dataset and test our methods
on all user pairs among these top-K users which co-locate at
least once. In Figure 3(c) and 3(d), we show the AUC values
of all methods w.r.t. different values of K. From the results,
we can make the following observations.

1. The meeting frequency itself is an important indicator of
relationships. It achieves much higher accuracies than random
guess, which shows the ratio of the friend pairs in both
datasets. Further, it works well for users with large number of
check-ins (i.e., top-ranked active users), but its performance
degrades as the degree of user activeness decreases. In other
words, it is more difficult to predict the relationships of
inactive users using the meeting frequency alone.

2. Both the personal factor and the global factor help bet-
ter differentiate the friend pairs from non-friend pairs. But
personal factor is more sensitive to the number of check-ins
of each user, since its performance degrades faster than the
global factor as the value of K increases. This is because
we rely on each user’s own location history to compute his
personal background. So the more check-ins a user has, the
more accurate the estimation of his personal background is.
Finally, by combining the personal factor and the global factor,
we are able to leverage the strengths of both factors to achieve
a consistently better performance over the baseline.

3. The performance of our method may be further improved by
considering the temporal dependencies between consecutive
events. In particular, the temporal correlation weight works
well for users with large number of check-ins, as it effectively
penalizes the consecutive meeting events between two users
with a small time gap. However, it becomes less useful as
the level of user activities decreases (so that more user pairs
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Fig. 4. The distribution of time gaps between consecutive meeting events for
three representative groups (meeting frequency = 2, 5, 10). For each group,
we plot the percentages of time gaps (A¢) of all friend pairs (left) and non-
friend pairs (right) that fall into one of the three categories: Ay < 1, 1 <
Ay < 10, and A > 10.
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Fig. 5. The precision-recall curves on top 5000 users from the two datasets.

with one or two co-locating events are included). Indeed, in
the extreme case when the meeting frequency of a user pair
is 1, the temporal dependency factor reduces to the baseline
meeting frequency measure.

In addition, comparing Figure 3(c) with 3(d), we can see
that the temporal correlation weight is more effective in the
Gowalla dataset than the Brightkite dataset (also see Figure 5
for more details). To understand this phenomenon, we need
to examine some inherent properties of the two datasets. In
Figure 4, we show the distributions of time gaps of consecutive
meeting events in the two datasets. As shown in Figure 4(a),
in Gowalla dataset, the average time gap of friend pairs is
significantly larger than that of non-friend pairs. For example,
among all user pairs with meeting frequency of 5, more than
50% of time gaps for friend pairs are larger than 10 days,
whereas more than 50% of the time gaps for non-friend pairs
are less than 1 day. In fact, we note that many co-locating
events of non-friend pairs occur in a very short time span
at popular places such as Times Square. Thus, by considering
the temporal correlations, we can effectively differentiate them
from those of friend pairs, which tend to occur in a more
regular basis over a long time span. However, as shown
in Figure 4(b), in Brightkite dataset there is no significant
difference in terms of the distribution of time gaps for friend
and non-friend pairs. As a result, the temporal correlation
measure is not very useful.

In Figure 5(a) and (b), we further plot the precision-recall
curves of all methods for top 5000 users in Gowalla and
Brightkite datasets, respectively. Looking closely at the results,
we can see that the personal factor is more effective when
recall is low (i.e., for pairs with higher meeting frequency,

0.6f
05
0.4
L
0.3
0.
0.1f—Gowalla |}
= Brightkite .
L/*Z -1 ‘..0 1 2
10 10 0 10 10

PGT measure

Fig. 6. The F1 curves for two dataset using different PGT threshold to
identify friend pairs.

because they are more easily to be retrieved), whereas the
global factor is more effective when recall is high (i.e., for the
pairs with lower meeting frequency). This can be explained
as follows: many non-friend pairs co-locate at popular public
places by chance, but friend pairs tend to meet at less pop-
ular places. For a pair with one or two co-locating events,
using global factor one can easily differentiate whether they
are friends or not. Meanwhile, friends with higher meeting
frequency (i.e., stronger relationships) are more likely to travel
together to some interesting places (e.g., a national park),
where they rarely visit by themselves. Such cases can be easily
captured by the personal background model.

In order to show how to pick the optimal threshold for
PGT, we plot the F1 scores w.r.t. different PGT thresholds in
Figure 6. We treat all the pairs with PGT values higher than
the threshold as friend pairs. For Gowalla and Brightkite, our
method achieves the best performance at (F'1 = 0.59, PGT =
4.28) and (F1 = 0.58,PGT = 2.95), respectively. When
setting PGT threshold in the range of [3,4], the F1 scores
are higher than 0.57 on both datasets. This implies that PGT
measure is consistent on the two datasets, in spite of their
differences, such as the difference of time gaps shown in
Figure 4.

C. Parameter Sensitivity

In our methods, there are two parameters, cq and c,
which control how fast the impact of a single location record
decays in spatial and temporal dimensions, respectively. In this
section, we study the sensitivity of our method to these two
parameters using the Gowalla dataset.

Spatial parameter: c; is used to estimate the density of a
specific location for our personal factor. Note that, in this
paper, we use kilometer as the unit of spatial distance. In
Figure 7(a), we show the precision of our personal background
measure (GQ(EZ-J-)) as a function of ¢4 at different recall levels
(0.3, 0.5, and 0.7). As one can see, this measure achieves the
best performance when ¢ is in the range of [1, 3]. Note that if
cq 1s in this range, the exponential function gets relatively large
values when d < 1km, and quickly approaches zero when
d > 5km. This is expected, considering the typical range of
human movements.

Temporal parameter: c; is used to calculate the temporal
dependencies among multiple meeting events of a user pair.
Note that, in this paper, we use day as the unit of time. In
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Fig. 8. The meeting places of two user pairs. Both pairs have met five times
in total. The first (friend) pair meet twice in San Francisco (loc1 and loc2),
and three times in downtown Austin (locs to locs,). The second (non-friend)
pair meet five times at the same location locg.

Figure 7(b), we plot the precision of our relationship strength
measure (G(E;;)) as a function of ¢; at different recall levels.
We can see that our measure works the best when ¢; is in the
range of [0.1,0.3]. This result suggests that, if two meeting
events occur within about one week (7 days), they are less
independent, and therefore should be down-weighted when we
compute the relationship strength.

Based on the above analysis, we set ¢g = 1.5 and ¢; = 0.2
for all the experiments in this paper.

D. Case Studies

In this section, we perform case studies aiming to gain

insights into why our proposed method works and when it
fails to work on some cases.
Case 1 (Background factors): In this case, we study two
user pairs with the same meeting frequency and see how our
background factors can be used to differentiate them. The first
pair of users (#267 and #510) are friends, whereas the second
pair of users (#350 and #6138) are not friends. Both pairs have
met for five times in total.

In Figure 8, we show all the meeting locations for both pairs
on the map. In particular, users #267 and #510 (the friend pair)
meet at five different locations with two in San Francisco (locy
and [ocs) and three in downtown Austin (locs, locy, and locs).
Meanwhile, users #350 and #6138 (the non-friend pair) meet
five times all in the same place locg.

TABLE 11
LOCATION ENTROPY OF THE 6 LOCATIONS
locy loca locs locy locs locg
1.609 | 3.184 | 4.775 | 1.282 | 3.998 | 2.189

(d) User #6138

(c) User #350

Fig. 9. The density map of visited locations for the four users. Majority
of user #510’s activities are in San Francisco, whereas the other three users
mainly live in Austin.

To examine the global factor, we further show the location
entropies of these locations in the Table II. Compared to
locations locsy, locs and locs, location locg has a relatively
low entropy. If we compute the average global factor weights
for these two pairs, we get 1.52 for users #267 and #510, and
1.57 for users #350 and #6138. Therefore, if we simply look at
the global factor, we cannot get confident conclusion. We may
even reach the wrong conclusion that users #350 and #6138
are more likely to be friends.

Looking into the personal factor, in Figure 9(a)-(d), we show
the density map of the locations visited by each of the four
users, respectively. We can easily see that the majority of user
#510’s activities happen in San Francisco, whereas all the other
three users mainly live in Austin. Given the fact that users
#267 and #510 live in two different cities, the probability that
they meet each other five times all by coincidence is very
low. So they are very likely to be friends and have travelled
to see each other intentionally. In contrast, both users #350
and #6138 live in Austin and frequently visit locg so they
are more likely to meet by chance (location locg is actually a
high school and these two users could attend the same high
school but do not personally know each other). In this case,
personal factor plays an important role in differentiating the
relationship. If we calculate the frequency weighted by the
personal factor, we get 22.03 for #267 and #510 (the friend
pair) and 9.72 for #350 and #6138 (the non-friend pair).
Case 2 (Temporal correlation): In this case study, we add
another non-friend pair of users (#39746 and #39584) who also
meet five times. In Table III, we compare the personal factor
weight (max., {w};(ex)}), the global factor weight (wy;) and
the temporal correlation weight (Eﬁj) of all the three user pairs.
As one can see, the personal factor weight for the this pair (i.e.,
the third pair in Table III) is 23.80, which is higher than the
other two pairs. This suggests that they meet at places where
they rarely visit, contradicting to our intuition that non-friend
pairs tend to co-locate at places where they frequently visit.

However, if we look closely at their meeting locations, we
can see that these locations are quite far away from each other.
In particular, the distance from locg to locig is 857km, but
the time difference between these two events is only about 8
hours. Therefore we can infer that #39746 and #39584 must



TABLE III
THE THREE MEASURES FOR THREE PAIRS

User ID Friends? | Personal | Global | Temporal
267 510 Yes 22.03 1.52 3.77
350 6138 No 9.72 1.57 3.99

39746 | 39584 No 23.80 2.23 1.39

Time 8 h 43 min
Distance 857 km

.| Location | Latitude | Longitude Time
locy 59.3312 18.0567 | 2010-08-13 05:54:10
locy 57.8221 14.2691 2010-08-13 10:00:04
locy 56.1816 15.0727 | 2010-08-13 14:04:45

locs

Fig. 10. Three meeting events happened within 8 hours for a non-friend pair
#39746 and #39587.
be traveling together (possibly on a train), and have made
three consecutive check-ins in the same day. Such meeting
events can be captured using the temporal correlation weight,
as shown in Table III. Combining all three factors, users #267
and #510 still have the highest overall score among the three
pairs, which agrees with the fact that they are the only friend
pair in this case.
Case 3 (Failed Cases): It is also interesting to study some
failed cases, such as those non-friend pairs which are assigned
with high relationship scores by our method. For example, the
highest ranked non-friend pair in the Gowalla dataset is users
#10683 and #10681. Looking at their location history, we find
that they meet 24 times in total, which is higher than 90.97%
of the friend pairs. In addition, the 24 meeting events occur
at 16 different locations, and are spread out over one-year
period. All these facts indicate that they should be friends.
So we further look into the social networks of users #10683
and #10681. We find that they share 16 common friends, while
they have 51 and 36 friends, respectively. Therefore, a possible
explanation for this abnormal case may be that they simply did
not report their friendship using the social networking service.
We also check the friend pairs that are given low mobility
relationship scores by our method. In particular, the lowest
ranked friend pair is users #6248 and #4609, who only meet
once at the popular Vimeo Theater in downtown Austin. The
global factor will suggest they are non-friend. These facts
suggest that they should not be friends, and the reason for this
abnormal case may be two-fold: (1) the mobility data is too
sparse to estimate their true mobility relationship, and (2) they
could have some online interactions which are not captured in
their mobility data.

E. Comparison with the State-of-the-Art Method

In this experiment, we further compare our PGT with
EBM [14], a state-of-the-art method which achieves the best
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Fig. 11. Comparison with the state-of-the-art methods.

performance among previous works [17], [15], [13], [18].
EBM is an entropy-based model designed to infer social
strength from the users’ movement data. It considers the
following two major factors:

Location Diversity: Two users who meet at many different
places are more likely to be socially connected than users
who only meet at one or two places, even if both pairs have
the same meeting frequency. In EBM, the Renyi entropy is
used to measure the diversity of co-occurrences. In general,
the more places two users have met, the higher the diversity
will be.

Weighted Frequency: EBM also uses the location entropy
to measure the popularity of a place. A popular public place
visited by many users will have a higher location entropy than
a private place. Using the same formula as our global factor,
a weight is computed for each meeting event based on its
location entropy.

Finally, a linear regression model is used in [14] to combine
these two factors into the EBM model (in this paper, we use
the same coefficients as reported in [14]).

In Figure 11, we show the precision-recall curves of various

methods including (1) the meeting frequency (baseline), (2)
the weighted frequency (meeting frequency weighted by the
global factor/location entropy), (3) the location diversity, (4)
EBM (linear combination of (2) and (3)), and (5) our social
strength measure (Personal + Global + Temporal). From the
results, we can make the following observations.
1. The location diversity measure alone performs poorly on the
Gowalla dataset (worse than the meeting frequency measure),
but works relatively well on the Brightkite dataset. To explain
this inconsistency, we show the average number of co-locating
places for various groups of users in both datasets in Table IV.
As one can see, friend pairs in Brightkite dataset indeed visit
more diverse places together than non-friend pairs. But this is
not true for the Gowalla dataset.

TABLE IV
AVERAGE NUMBER OF CO-LOCATING PLACES.
Data set freq=2 | freq=5 | freq=10
Gowalla Friend Pair 1.85 4.03 7.26
W Non-friend Pair 181 136 712
. . Friend Pair 1.53 2.92 4.47
Brightkite |~ rend Pair T.19 144 718

2. As expected, the weighted frequency outperforms the meet-
ing frequency on both datasets, since it considers the global
background of each place. In addition, since EBM combines



weighted frequency and location diversity using a linear model
combining weighted frequency and location diversity, it does
not work well on Gowalla dataset due to the poor performance
of the location diversity measure. But EBM outperforms both
the weighted frequency and location diversity components on
the Brightkite dataset.

3. Our method performs the best among all. In addition to
the global background considered in EBM, our method also
takes into account the personal mobility background and the
temporal correlations among multiple events. As shown in our
experiments, each of these factors play an important role in
differentiating actual meeting events between friends and other
co-locating events between strangers.

VII. RELATED WORK

Using the geographical records to infer people’s social
behaviors and relationships is a hot topic in spatiotemporal
data mining. Extensive research has been done in this area.

One related area of research is on the similarity measure of
trajectories [19], [20], [21], [22]. Here, the subject of study
is not restricted to sequences of locations on the map, but
also include trajectories in other spaces, such as the positions
of body joints of a person playing Kung-Fu, hand-writing
trajectories, or hurricane trajectories. Such measures are not
suitable for judging the similarity of human movements.

To measure of similarity of human trajectories, the sequence
similarity has been studied in the literature [23], [24], [25].
In these works, a human trajectory is first transformed into
a sequence of semantic locations, such as “shopping mall —
restaurant — cinema”. The similarity between two trajectories
is then measured as a weighted matching score between the
symbolic sequences. Such measures can be used to find people
who have taken the same routes in their movement history, but
they may not necessarily appear in the same place at the same
time.

A co-locating event captures the direct interaction among
moving objects. Based on the co-locating events, a line of
research has been focused on mining moving clusters from
the spatiotemporal data. Representative works include [8],
[9], [10], [11], [12]. However, all these methods measure the
degree of relationships based on the meeting frequency, and
do not consider the background models of the moving objects.
As we have shown in this paper, the meeting frequency itself
may not necessarily indicate the actual relationships.

Our work falls in the category of studies that aim to
detect social relationship from geospatial data [17], [15], [13],
[18], [14]. The methods proposed in [17], [15] have looked
into the meeting events that occur at different times (e.g.,
weekday v.s. weekend or day v.s. night) to infer different types
of relationships such as colleagues and friends. Meanwhile,
Cranshaw et al. [15] extract a set of features from both the
meeting events and the individual mobility patterns and learn
a model to identify friendships in social check-in data. In
addition, Pham et al. [18], [14] further consider the diversity
of meeting locations to handle cases that two users meet by

coincidence. However, none of these methods has considered
using the personal background to differentiate meeting events.

VIII. CONCLUSION

In this paper, we have studied the problem of measuring the
relationship strength of mobile users based on their spatiotem-
poral interactions. We have proposed a unified framework to
integrate different types of background models, together with
the temporal correlation of multiple meeting events. Extensive
experiments on two real datasets show that our method sig-
nificantly outperforms the state-of-the-art in discovering true
relationships in the mobile users.
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