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Abstract—Movement data have been widely collected from
GPS and sensors, allowing us to analyze how moving objects
interact in terms of space and time and to learn about the
relationships that exist among the objects. In this paper, we
investigate an interesting relationship that has not been ade-
quately studied so far: the following relationship. Intuitively, a
follower has similar trajectories as its leader but always arrives
at a location with some time lag. The challenges in mining the
following relationship are: (1) the following time lag is usually
unknown and varying; (2) the trajectories of the follower and
leader are not identical; and (3) the relationship is subtle and
only occurs in a short period of time. In this paper, we propose a
simple but practical method that addresses all these challenges.
It requires only two intuitive parameters and is able to mine
following time intervals between two trajectories in linear time.
We conduct comprehensive experiments on both synthetic and
real datasets to demonstrate the effectiveness of our method.

I. INTRODUCTION

Advanced positioning technology enables us to collect a
huge amount of movement data from people, animals, and ve-
hicles. Growing interest in mining spatiotemporal interactions
among individuals has been driven by important applications
in human mobility understanding, ecology studies, and home-
land security. For example, various measures [25], [23], [5],
[4] have been proposed to find the top-k similar trajectories
to a query trajectory. Methods have been developed to detect
clusters of moving objects [11], [9], [8], [14], [13], [26].

In this paper, we are particularly interested in mining
following relationships in movement data because detection
of such patterns can benefit many real applications. For
example, animal scientists study which individual animal leads
the group when animals move in order to determine the
social hierarchy, whereas police and security officers look
suspicious movements of a criminal who is following a victim.
Considering the excessive number of tracking records, it would
be extremely difficult for people to manually inspect them and
find such patterns.

Given the trajectories of two moving objects, we study
how to automatically detect the time intervals in which the
following relationship occurs. Generally speaking, to mine the
following relationship, it suffices to identify time intervals
in which an object (the follower) has similar trajectories as
another object (the leader), but always arrives at a location
with some time lag.1 However, in practice this is not an easy

1In fact, follower and leader are just two different roles in the same
relationship. Our discussion in this paper will be focused on the following
relationship, but it can also be applied to the leadership relationship.
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Fig. 1. In this example, object R follows object S from 10:01 to 10:20 and
moves together with object S afterwards.

task at all, due to the following challenges:
• Challenge 1. The following time lag is usually unknown

and varying. For example, if a coyote follows a wolf
for food, sometimes it may arrive 1 minute late and
sometimes the lag could be 10 minutes. In Figure 1,
we show an illustrative example where r1 is 11 minutes
behind s1, but then R catches up with S as r5 is only 3
minutes behind s3.

• Challenge 2. The follower may not have exactly the same
trajectory as the leader. As shown in Figure 1, follower R
has a different trajectory from S. In reality, the follower
may take a shortcut to catch up with the leader. Or, some
followers may intentionally avoid taking the same route
as the leader. For example, a suspect may take a different
path to avoid being noticed by a victim.

• Challenge 3. The following relationship could be subtle
and always happens in a short period of time. Various
relationships, such as moving together, following, and
being independent, could happen between two objects at
different time periods. For example, a coyote only follows
wolves closely when it is hungry. For the remaining
time, its movement could be largely independent of the
wolves’. In Figure 1, we can see that R follows S only
before time 10:20 and moves together with S afterwards.
Therefore, it is crucial to differentiate following relation-
ships from other relationships and to find the correct time
intervals in which following relationships actually occur.

A. Related Work

A limited number of methods have been proposed to detect
following relationships in movement data [11], [12], [2], [6].
In the REMO framework [11], [12], [2] and the chasing pattern
proposed in [6], a leader should appears in the front region
of the follower(s) or move in the same direction. However,



the assumptions in these methods are often violated in in real
scenarios. In the previous example shown in Figure 1, r2 is
heading downwards at 10:10, and s2 is apparently not in the
front region of r2.

In the domain of time series research, lagged product-
moment correlation (i.e., cross-correlation) method has been
used as a standard method to capture the time delay in two time
series [20], [18], [24]. Similar correlation measures have also
been applied to moving objects [21], [15]. In those studies, a
window is introduced to capture the local correlation of the
trajectories. A major limitation of the windowed correlation
measure is that it can only detect relationship with a constant
time lag. In addition, correlation-based method typically has
very high time complexity because it needs to enumerate
every time window, time lag, and starting point. For the same
reason, as we will see, this method will also generate a
large number of redundant results. Therefore, the correlation
measure is more adequate to determine the significance of
dynamic interactions between objects, but it is not suitable for
mining such interactions from large-scale data.

B. Our Contribution

In this paper, we first develop a method to solve the
following relationship mining problem by transforming the
problem into the well-known local sequence alignment (LSA)
problem, which has been extensively studied in multiple areas
such as bioinformatics and speech recognition. Specifically,
LSA aims to detect similar regions in two sequences, such
as molecular sequences [22], [1], [17], time series [10], [7],
and trajectories [5], by allowing some mismatch, deletion and
insertion operations.

For our problem, we define two points (ri, sj) as a matching
pair if the distance between ri and sj is smaller than a
threshold dmax and if the time lag between them is smaller
than a threshold lmax. Then, we use the Smith-Waterman
algorithm [22] for LSA to find intervals with most matching
pairs. While this method is able to identify some time intervals
with following relationships in movement data, we find that
its performance is very sensitive to the parameter dmax. Take
Figure 1 as an example. If dmax is large, the method is
likely to incorrectly report the time interval after 10:20 (i.e.,
when the objects are moving together) as a following interval.
Meanwhile, if dmax is small, the true following interval (from
time 10:01 to 10:20) will be missed. This example illustrates
that LSA solely relies on dmax to differentiate the following
relationship from other relationships (see Challenge 3). Un-
fortunately, an optimal threshold dmax is usually unknown to
us, and may not even exist in many real cases.

Motivated by this critical issue of LSA, we further propose
a novel method to mine following relationships in movement
data. Our key observation is that, if an object R is following
S at a certain index i, then for the point ri on R, there must
exist a point sj on S which is spatially close to ri, and S
visits sj earlier than R visits ri. In fact, sj should be a local
minimizer of the distance between ri and S within a certain
time range. For example, in Figure 1 the closest point to r1 is

s1, and by comparing their timestamps we can see that R is
following S at 10:01. More importantly, it is easy to see that
the local minimizer does not change with parameter dmax,
which is crucial for the success of our method.

Meanwhile, if there exists a time interval in which R is
following S for most of the timestamps, that interval is likely
to have a significant following relationship. Therefore, our task
becomes finding all such time intervals given two trajectories.
To solve this problem efficiently, we show that the problem can
be transformed into the well-known Maximum Sum Segment
Problem, for which the optimal solution can be found in linear
time. In addition, there is no extra parameter needed in the
proposed algorithm other than dmax and lmax.

We conducted comprehensive experiments on both real and
synthetic data to verify the effectiveness of our method. In
this paper, we ultimately demonstrate for the first time that
many interesting and important following relationships can
be detected automatically from real animal movement data,
despite all the challenges we have mentioned before.

The remainder of the paper is organized as follows. In
Section II, we give a formal definition of the following pair.
In Section III, we discuss how to find following time intervals
by transforming our problem to LSA. Then, in Section IV, we
describe in detail our new method for following relationship
mining. Experimental studies in Section V demonstrate the
effectiveness of our method on both synthetic and real datasets.
Finally, we present our conclusions in Section VI.

II. PRELIMINARIES

Suppose we are given the trajectories of two moving objects,
denoted by R = r1r2 . . . rn and S = s1s2 . . . sn respectively,
where ri and si are the locations (i.e., longitude and latitude)
recorded at the same timestamp i. For the sake of simplicity,
we assume that the locations of moving objects are sampled
at synchronized timestamps, though both methods discussed
in this paper can easily be extended to handle unsynchronized
data.

In order to detect following relationships, we note that if
R is following S at timestamp i, then ri must be spatially
close to some location sj , and S arrives at location sj ahead
of R (i.e., j < i). In the definition below, we introduce two
parameters dmax and lmax to formally describe the concepts
of“spatially close” and “arrives ahead of”.

Definition 1 (Following Pair). Given thresholds dmax and
lmax, a location pair (ri, sj) is said to be a following pair
if ‖ri − sj‖ < dmax and 0 < i− j ≤ lmax.

Example 1. (The running example) We use the example in
Figure 2 as a running example in this paper. Here, a green
line (solid or dashed) connecting ri and sj means that these
two locations are within the distance threshold dmax. A solid
green line in Figure 2 further indicates that (ri, sj) is a
following pair according to Definition 1. In this example, R
has a following relationship with S in time interval [3:11],
although R is not strictly following S at every timestamp in



Fig. 2. The running example. R (blue) follows S (red) in time interval
[3:11].

this interval. In particular, R takes a shortcut to catch up with
S at location r6. In addition, R starts to move together with
S at timestamp 12.

III. METHOD VIA LOCAL SEQUENCE ALIGNMENT

To mine following relationships from trajectories, a straight-
forward solution could be mapping our problem onto the
local sequence alignment (LSA) problem. The classic LSA
problem aims to identify similar subsequences in two symbolic
sequences, and can be solved efficiently using a well-known
dynamic programming algorithm called the Smith-Waterman
algorithm [22]. The algorithm is guaranteed to find the optimal
local alignment with respect to the scoring schema. We first
briefly introduce the algorithm and then discuss how to use it
to find following relationships.

Given two sequences A = a1a2 . . . an and B = b1b2 . . . bn
over the alphabet Σ, we define the matching score between
any pair (ai, bj), where ai, bj ∈ Σ

⋃
{−}, as follows:

w(ai, bj) =

 w(match) if ai = bj
w(mismatch) if ai 6= bj
w(gap) if ai = − or bj = −

(1)

Here, the symbol “−” denotes a gap (insertion or deletion)
in the alignment. Then, we use dynamic programming to
compute the optimal alignment scores of all subsequences
a1a2 . . . ai (1 ≤ i ≤ n) and b1b2 . . . bj (1 ≤ j ≤ n) and
store the scores in matrix H:

H(i, j) = max


0

H(i− 1, j − 1) + w(ai, bj) match/mismatch
H(i− 1, j) + w(ai,−) deletion
H(i, j − 1) + w(−, bj) insertion

with H(i, 0) = H(0, j) = 0, 0 ≤ i, j ≤ n.
After obtaining the matrix H , we can get the optimally

aligned subsequences between A and B. Suppose H(q, v)
is the cell with the highest value in matrix H . By tracing
back the values of matrix H , we can identify the best aligned
subsequences, denoted as apap+1 . . . aq and bubu+1 . . . bv .
To find all the subsequences in A that match with B, we
can recursively break sequence A into two subsequences
A1 = a1a2 . . . ap−1 and A2 = aq+1aq+2 . . . an and find the
best alignment between each Ai and B.

It is straightforward to extend the Smith-Waterman algo-
rithm to detect following intervals in trajectories. We only need
to modify the matching score in Eq. (1) so that two locations
ri and sj are considered as a match if and only if (ri, sj)
is a following pair according to Definition 1. Meanwhile,
we note that the Smith-Waterman algorithm has also been
applied to trajectory data in [5], which aims to measure the
similarity between two trajectories. The previous work [5] has
demonstrated that, by quantizing the distances between two
locations using a threshold dmax, their method is more robust
to outliers than other methods using Euclidean distance or
dynamic time warping (DTW). Applying the Smith-Waterman
algorithm on our problem can effectively address the issue
of varying time lags in the following relationship. However,
the algorithm is sensitive to parameter dmax. We will use
Example 2 below to illustrate this flaw.

Example 2. For the running example in Figure 2, we set
w(match) = 1, w(gap) = w(mismatch) = −1 and show
the optimal alignment obtained by using the Smith-Waterman
algorithm in Table I. Each column of Table I shows one
alignment and its corresponding cost of operation. A gap “−”
in the row of R or S represents a deletion/insertion operation
with penalty −1. A mismatch operation has a penalty score as
−1, such as the case for pair (r6, s5). The remaining columns
with w = 1 are the matching cases.

TABLE I
AN OPTIMAL SEQUENCE ALIGNMENT.

R r1 r2 r3 r4 r5 - r6 r7

S - - s1 s2 s3 s4 s5 s6

w −1 −1 1 1 1 −1 −1 1

R r8 r9 r10 r11 r12 r13 r14 -
S s7 s8 s9 s10 s11 s12 s13 s14

w 1 1 1 1 1 1 1 −1

The corresponding highest cell value is H(14, 13) = 9,
which is achieved by matching r3 . . . r14 with s1 . . . s13. How-
ever, as we can see from Figure 2, R and S are actually
moving together during time interval [12:14]. Since the goal
of LSA is to maximize the alignment score, the output of
LSA will incorrectly report that R is following S during this
time interval. We could set dmax to a smaller value so that
(r12, s11), (r13, s12), and (r14, s13) are no longer following
pairs. But, in this case, the algorithm would fail to detect the
true following time interval [3:5] since the distances between
r3, r4, r5 and s1, s2, s3 would be larger than dmax.

We can see from the above example that, despite its
computational efficiency and ability to handle varying time
lag, applying the Smith-Waterman algorithm to our problem
is flawed in that it solely relies on the distance threshold
dmax to differentiate true following relationships from “simply
being spatially close”. In other words, LSA is very sensitive
to the choice of dmax. If dmax is loose, then this method
will incorrectly treat time intervals in which two objects are
spatially close as following intervals. If dmax is tight, some
true following intervals might be lost. In order to overcome



these pitfalls, in the next section we propose a new following
relationship mining method that is simple and efficient, yet
effective and insensitive to the choice of dmax.

IV. METHOD USING LOCAL DISTANCE MINIMIZER

In this section, we present a novel method to mine following
relationships in movement data. We observed that, if R is
following S at timestamp i, then there must exist a strictly
positive integer ∆(i) such that ri is spatially close to si−∆(i).
In fact, the distance between ri and S should be minimized
locally at such ∆(i). Therefore, we formally define the fol-
lowing pattern based on the idea of local distance minimizers
as follows.

Definition 2 (Local Minimizer). Given a time range I = {t ∈
Z,−lmax ≤ t ≤ lmax}, we define the local minimizer ∆(i) as

∆(i) = arg min
t∈I
‖ri − si−t‖. (2)

We say a trajectory R is following S at timestamp i (or a
following pattern occurs at timestamp i) if ∆(i) > 0 and
‖ri − si−∆(i)‖ < dmax.

Before proceeding, we make a few important comments
about parameters lmax and dmax and constraint ∆(i) in
Definition 2.

1) Unlike existing methods, which assume a constant and/or
known time lag, our definition of the following pattern
assumes that the time lag is unknown and varying within
a range (0, lmax]. As we will see later, this relaxation is
the key to the successful discovery of subtle following
relationships in real movement data.

2) In Definition 2, we assume that the two objects must be
within a distance threshold dmax for the following pattern
to occur. This is because, in the real world, moving
objects cannot have any physical interaction if they are
too far away from one another. Consequently, dmax is
usually set in a relaxed fashion here to remove timestamps
with no interaction. The use of dmax in Definition 2
is different from the way dmax is used in LSA, where
it serves to differentiate the following relationship from
other relationships (a much more challenging task). Fur-
thermore, we note that for any ri, the choice of dmax

has no effect on the local minimizer ∆(i). This contrasts
with LSA, whose performance relies heavily on dmax.

3) We can define the leading pattern between R and S in
the same way as Definition 2, except that ∆(i) < 0 must
hold.

We can find all the timestamps at which R is following S
using Definition 2. However, in practice, people are usually
more interested in mining long time intervals with significant
following relationships, since individual following timestamps
are less informative in terms of revealing the actual relation-
ship between two objects and are often very sensitive to the
noise in movement data. Therefore, in the rest of this section
we define the following score for any time interval based on
Definition 2 and study how to obtain intervals with the highest
following scores efficiently.

A. Following Score

Based on Definition 2, we first define a function f(·) at
each timestamp as follows:

f(i) =

 1, if ∆(i) > 0 and ‖ri − si−∆(i)‖ < dmax

0, if ∆(i) ≤ 0 and ‖ri − si−∆(i)‖ < dmax

x, if ‖ri − si−∆(i)‖ ≥ dmax

As we discussed in the previous section, f(i) = x indicates
that there is no interaction between R and S at timestamp i.
Therefore, we say i is valid if f(i) 6= x. A time interval I is
valid if all the timestamps in I are valid. Note that since the
following relationship only occurs in valid time intervals, we
can safely break the entire sequence into segments in which
all the timestamps are valid and then process each segment
independently.2 Therefore, without the loss of generality, we
assume that all the timestamps in the sequence are valid for
the rest of this section.

For any time interval I , we further define

f(I) =
∑
i∈I

f(i). (3)

We observe that, if two objects are simply moving together
in a time interval with no following relationship, we should
expect to see a balanced number of following and leading
patterns for this time interval. Likewise, a time interval with
a significant following relationship should have substantially
higher frequency in terms of following patterns compared with
the expected number. Given a time interval I , let µ(I) denote
the number of following patterns which are expected to fall
into I . Mathematically, µ(I) is equal to the average frequency
observed over all timestamps, multiplied by the length of the
interval:

µ(I) = |I| ×Avg (f([1 : n])) = |I| ×
n∑

i=1

f(i)/n.

If there is no following relationship between R and S, then
the distribution of ∆(i) in Definition 2 should be symmetric
around 0. In other words, following patterns should occur for
about half of the sequence. Hence we have

µ(I) = 0.5× |I|. (4)

We define the following score as:

g(I) = f(I)− µ(I) = f(I)− 0.5× |I|. (5)

TABLE II
EXAMPLE OF f(·).

ri r1 r2 r3 r4 r5 r6 r7

nearest point s1 s1 s1 s2 s3 s6 s7

f(i) x x 1 1 1 0 0

ri r8 r9 r10 r11 r12 r13 r14

nearest point s7 s8 s9 s10 s12 s13 s14

f(i) 1 1 1 1 0 0 0

2Throughout the paper, we use the words “interval” and “segment” inter-
changeably.



Example 3. Table I shows the value of f(·) as well as the
nearest point sj for each ri in the running example in Figure 2.
We have f(1) = f(2) = x, because r1 and r2 are not close
to any points in S (i.e., the distances are larger than dmax).
Meanwhile, f(3), f(4), f(5), f(8), f(9), f(10), and f(11)
take value 1 because the nearest points in S for those points
have smaller timestamps (i.e., S arrives at those locations
before R). f(6), f(7), f(12), f(13) and f(14) are 0 because
S arrives at those locations at the same time or later than R.

In addition, it is easy to verify that interval [3 : 11] has
the highest following score among all valid intervals, with
g([3 : 11]) = 7− 4.5 = 2.5.

B. Maximizing Following Score

Given the definition of following scores, our goal is to find
the intervals with the highest scores.

Problem 1 (Finding Following Time Interval). Given the
thresholds lmax and dmax, identify the set of intervals that
maximize the following score g(·).

Next, we show that Problem 1 is equivalent to the well-
known Maximum Sum Segments Problem [3], defined as
follows:

Problem 2 (Maximum Sum Segments Problem). Given an
input sequence X = x1x2 . . . xn of real numbers, find K
segments with the highest total scores, where the score F(X[i :
j]) of a segment X[i : j] = xixi+1 . . . xj is equal to the sum
of its elements:

F(X[i : j]) =
j∑

k=i

xk. (6)

To demonstrate that Problem 1 and 2 are equivalent, it
suffices to show that the following score of any given interval
is equal to the sum of the following score of the individual
timestamps in the interval. The proof is trivial, since we have:

g([a : b]) = f([a : b])−1
2
|[a : b]| =

b∑
i=a

(
f(i)− 1

2
)

=
b∑

i=a

g([i : i]).

Therefore, Problem 1 is now reduced to solving the Maxi-
mum Sum Segments Problem with:

xi = g([i : i]) = f(i)− 0.5. (7)

However, the standard formulation of the Maximum Sum
Segments problem has an obvious disadvantage: a set of
heavily overlapping segments may have similar high scores,
resulting in redundant detection results. To remedy this issue,
we will use the concept of the maximal segment:

Definition 3 (Maximal Segment). Let X be a non-empty score
sequence. A segment X[i : j] is maximal in X if (1) all proper
sub-segments of X[i : j] have a lower score and (2) no proper
super-segments of X[i : j] in X satisfies (1).

An important property of the maximal segment is that two
maximal sequences cannot overlap [19]. The proof is intuitive.

Basically, given two maximal overlapping sequences, either
the union or the intersection of the two has a higher score than
one of the two, creating a contradiction. Thus, every element of
the input sequence belongs to exactly one maximal segment.
Now, we can formally formulate our following relationship
mining problem as shown below:

Problem 3 (Finding All Maximal Segments). Given an input
sequence X = x1x2 . . . xn with xi = f(i) − 0.5, identify the
set of all maximal segments of X .

C. Reverse Test

So far, our analysis has been based on the following patterns
from sequence R to S (Definition 2). However, the following
relationship is a type of mutual interaction. Therefore, if we
assume that R is following S at timestamp i, then S is leading
R at i. This observation clearly provides an opportunity to
remove false positive segments and to further improve the
performance of our method via a reverse test. In this section,
we discuss how to modify our following score g(·) to take
such information into consideration.

Recall that, given threshold dmax and lmax, we say S is
leading R at timestamp i if ∆r(i) < 0 and ‖ri− si−∆r(i)‖ <
dmax, where

∆r(i) = arg min
−lmax≤t≤lmax

‖si − ri−t‖. (8)

Note that here we use the subscript “r” to denote the reverse
relationship. Similar to the definition of f(·), we define a new
function fr(·) as follows:

fr(i) =

 1, if ∆r(i) < 0 and ‖si − ri−∆r(i)‖ < dmax

0, if ∆r(i) ≥ 0 and ‖si − ri−∆r(i)‖ < dmax

x, if ‖si − ri−∆r(i)‖ ≥ dmax

Now, given any timestamp i at which R is following S
(f(i) = 1), we can do the reverse test by checking the value
of fr(i − ∆(i)). Based on the result of the reverse test, we
define the new following score g′(·) as follows:

g′(i) =

 1, if f(i) = 1 and fr(i−∆(i)) = 1
0, if f(i) = 1 and fr(i−∆(i)) = 0
−1, if f(i) = 0

(9)

Note that fr(i−∆(i)) cannot take value −1 when f(i) = 1,
hence g′(i) is well-defined. Finally, we can state the modified
following relationship mining problem as follows.

Problem 4. Given an input sequence X = x1x2 . . . xn with
xi = g′(i), identify the set of all maximal segments of X .

TABLE III
EXAMPLE OF g′(·).

ri r1 r2 r3 r4 r5 r6 r7

g′(i) x x 1 1 1 −1 −1

ri r8 r9 r10 r11 r12 r13 r14

g′(i) 0 1 1 1 −1 −1 −1



Example 4. Comparing Table II with Table III, we see that
most of the 1’s and 0’s in f(i) become 1’ and -1’s, respectively,
in g′(i). The only exception is that g′(8) = 0, because r8 is
following s7, but s7 is not leading r8. The closest point in R
to s7 is r7. It can be further shown that interval [3 : 11] again
has the highest score among all valid intervals.

D. Algorithm

In this section, we describe the general algorithm for finding
all the following intervals from a pair of trajectories. We name
the specific algorithms that solve Problems 3 and 4 as FOL-1
and FOL-2, respectively.

First we note that, given a pair of trajectories with length
n, it takes O(n · lmax) time to compute the following scores
g(·) or g′(·) for all the timestamps. Since lmax is typically a
small constant compared with n for real applications, we see
that the time complexity of computing the following scores is
linear in n.

Then, given the sequence of following scores X , we use
a linear-time algorithm (i.e., O(n)) proposed in [19] to find
all the maximal segments in X . The pseudo code is shown in
Algorithm 1. We refer interested readers to [19] for detailed
explanations and proofs.

Based on the above analysis, we conclude that the overall
time complexity of our method is O(n).

Algorithm 1 (Find All Maximal Following Time Intervals)
INPUT: A sequence X of real numbers.
OUTPUT: Maximal time intervals.
ALGORITHM:

1: sum← 0
2: k ← 0
3: for i← 1 to n do
4: sum← sum+ xi

5: if xi > 0 then
6: k ← k + 1
7: // A new interval Ik with one element xi

8: Ik.s← i, Ik.t← i
9: Lk ← sum− xi, Rk ← sum

10: while true do
11: j is the first Lj searched from Lk−1 to L1 that

Lj < Lk

12: if (j does not exist) or (Rj ≥ Rk) then
13: break
14: // Merge intervals Ij , Ij+1, . . ., Ik
15: Ij .t← i, Rj ← Rk

16: k ← j
17: Output all intervals: I1, . . ., Ik

V. EXPERIMENT

In this section, we present a comprehensive performance
study of our method on both synthetic and real datasets, and
compare it with three other methods: REMO, correlation-based
method and LSA.

A. Methods for Comparison

REMO. REMO [2] targets finding leaders among a group
of moving objects for k consecutive timestamps. To compare
it with our method, we set the size of the potential followers
to 1. Given two sequences R and S, the method constructs a
binary array storing whether si appears in the front region of
ri parameterized by an apex angle α, a radius r, and an angle
β restricting their difference in direction ‖di − dj‖. Figure 3
provides an illustration of this method. A following interval is
defined as an interval with consecutive 1’s in the binary array.

dj 

di 

|dj‐ di|≤β  ri  sj 

Front region of ri 

α 

r 

Fig. 3. Front region defined in REMO [2].

Note that REMO is originally designed for identifying
leaders in bird migration movement and uses the geometric
concept of a “front region” to capture the following relation-
ships. However, in general movement data, a leader does not
necessarily appear in the front region of the followers. To
maximize REMO’s ability to mine general following relation-
ships, we set its parameters to α = π/2, β = π and r = Inf.
As a result, REMO will report object R follows object S at
timestamp i, as long as R is in front of S at i.
Correlation-based method. Cross-correlation method has
been used as a standard method to capture the constant
time delay between two time series [20], [18], [24] and
trajectories [21], [15]. In these methods, a window is often
used to measure the local correlation between sequences.
Given two sequences R and S, let Corr(i, w, l) denote the
normalized cross-correlation method between subsequences
si−l . . . si+w−1−l and ri . . . ri+w−1, where w is the window
size and l is the time lag, we have

Corr(i, w, l) =
∑i+w−1

t=i (rt − r) · (st−l − s)√∑i+w−1
t=i |rt − r|2

√∑i+w−1
t=i |st−l − s|2

where r = 1
w

∑i+w−1
t=i rt and s = 1

w

∑i+w−1
t=i st−l. We

enumerate all the possible triplets (i, w, l) and find the set
of triplets that maximize Corr(i, w, l).
Local sequence alignment (LSA). As we discussed in Sec-
tion III, our problem can be cast as an LSA problem and solved
efficiently via the Smith-Waterman algorithm. Compared with
our method, LSA requires parameters on the weights of three
operations: w(match), w(gap) and w(mismatch). We tuned
them separately and found that LSA achieves the best perfor-
mance when w(match) = 1 and w(gap) = w(mismatch) =
−1. Therefore, we use this setting for all the experiments in
this paper.

B. Synthetic Dataset Generation

To quantitatively evaluate the performance of all methods,
we take the following steps to generate a pair of trajectories
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Fig. 4. Synthetic sequence example. (a) Two synthetic trajectories (blue
and red). Green dots indicate locations where following patterns occur. (b)
Histogram of the minimum distances, ‖ri−si−∆(i)‖, for all the timestamps.

R and S with a partial following relationship.
1) A random walk sequence S = s1s2 . . . sn is generated

according to the popular Rayleigh flight model [16]. At
each timestamp, the step size follows a normal distri-
bution N (0, σ2

d), whereas the direction is random and
isotropic.

2) For following intervals, select a set of time intervals I∗ =
{I∗i = [ak : bk]}mk=1, where 1 ≤ a1 < b1 < a2 < · · · <
bm ≤ n. For each timestamp i ∈ I∗, we draw a time lag
li uniformly from [l∗min, l

∗
max], where l∗max ≥ l∗min > 0.

We further enforce |li+1 − li| ≤ 2 to mimic the practical
situation in which the time lag does not change abruptly
at consecutive timestamps.

3) Perturb the following interval by changing li to −li for
each i ∈ I∗ with probability α (0 ≤ α < 0.5).

4) Compose the following segments in R. For each i ∈ I∗,
set ri = si−li + di, where di is a random variable drawn
uniformly from a disk at the origin with radius d∗max.

5) Fill in the remaining segments of R with random walk
sequences generated according to the Rayleigh flight
model with the same parameters as in Step 1.

Unless otherwise stated, we use the following default values
to generate the synthetic sequences: n = 1000, σd = 8, I∗ =
{[100 : 250], [700 : 800]}, l∗max = 10, l∗min = 1, α = 0.1
and d∗max = 8. Figure 4 shows an example of the sequences
generated according to the above procedure.3

3Note that we set n = 1000 simply because the correlation-based method is
too slow (i.e., O(n4)) when n is large. Our method has linear time complexity
and can handle much larger n.

We evaluate the performance of all methods using F1 score,
a commonly used measure in the field of information retrieval.
For our problem, let I = {I1, I2, . . .} denote a set of time
intervals with a following relationship discovered by any
method, we define the precision and recall as follows:

precision =
|
⋃
∀i,j(Ii

⋂
I∗j )|

|
⋃
∀iIi|

, recall =
|
⋃
∀i,j(Ii

⋂
I∗j )|

|
⋃
∀jI
∗
j |

,

where I∗ = {I∗1 , I∗2 , . . .} is the set of ground truth intervals.
Then, the F1 score is

F1 = 2× precision× recall
precision+ recall

.

C. Sensitivity of Parameters

In this section, we use synthetic data to study the sensitivity
of our methods FOL-1 and FOL-2 w.r.t. the parameters dmax,
lmax, as well as the noise level α. For each setting of the
parameters, we report the average F1 score over 100 trials.
Performance w.r.t. distance threshold dmax. In this experi-
ment, we fix lmax = 15 and show the F1 score of our methods
under different values of dmax in Figure 5(a). Note that dmax

grows exponentially in this experiment. As expected, both
FOL-1 and FOL-2 achieve the best performance when dmax =
d∗max = 8. Also, with the reverse test, FOL-2 outperforms
FOL-1, especially when dmax is large (hence a large number
of false positives may occur). In addition, our method does
not require the estimated dmax to be close to d∗max, as long
as dmax > d∗max. For example, with dmax = 8 · d∗max = 64,
FOL-2 still achieves a F1 score around 0.8. The observation of
our method being insensitive to dmax is very important since
d∗max is typically unknown in a real-world setting.
Performance w.r.t. maximum time lag lmax. In this experi-
ment, we fix dmax = 20 and show the F1 score of our methods
under various lmax, as shown in Figure 5(b). Both methods
achieve the best performance when lmax = l∗max = 10. More
importantly, our methods are not sensitive to the choice of
lmax, as long as lmax > l∗max.
Performance w.r.t. noise level α. In this experiment, we fix
lmax = 15, dmax = 40 and show the F1 score of our method
under various α in Figure 5(c). As the noise level increases,
the performance of our methods remains roughly the same,
because our methods are designed to detect any segment as
long as its following score is higher than expected.
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In summary, we have demonstrated that our methods are
not sensitive to the parameters dmax and lmax, or to noises
in the data. Since FOL-2 is more robust than FOL-1, we use
FOL-2 as our method in the following experiments.

D. Comparison with Other Methods on Synthetic Dataset

In this section, we first compare all the methods under
different levels of time lag variance ∆l. In this experiment,
we set I∗ = {[100 : 300]} and create multiple time lag
ranges with different variances by setting [l∗min, l

∗
max] = [l0 −

∆l, l0 + ∆l] with l0 = 16. For our method and LSA, we
set dmax = 16, lmax = 30. We supply the correlation-based
method with the ground truth window size (= 201) to make it
computationally feasible, and we only keep the interval with
the highest correlation score as the result. In a real-world
scenario, such a ground truth window is usually unknown.
Also, the correlation-based method takes 13 seconds with a
given time window, while all the other methods take less than
1 second.

In Figure 6(a), we show the F1 score of all the methods
as a function of time lag variance ∆l. Our method is not
affected by the increasing time lag variance, and it outperforms
other methods when the variance is large. In contrast, the
performance of the correlation-based method quickly degrades
as ∆l increases. Meanwhile, REMO performs poorly in all
cases because it requires one object to appear in the front
region of the other object for the following pattern to occur,
whereas we assume random and isotropic moving direction
when generating the synthetic data.

In Figure 6(b), we further examine the sensitivity of our
method and LSA to the parameter dmax. When dmax increases
from d∗max = 8 to 128 (16 times), the F1 score of LSA drops
from 0.9 to 0.52, whereas the F1 score of our method only
drops to 0.7. These results show that dmax affects our method
less than it does LSA. Such a difference will become even
more obvious on real dataset.

E. Case Study on a Real Dataset

In this section, we conduct a case study and a performance
comparison on a real dataset. The real dataset contains GPS
locations (longitude and latitude) of a group of 26 baboons
tracked from August 1 to August 27, 2012 in Laikipia, Kenya.
The sampling rate of this dataset is 1 location per second. For

all the experiments, we use dmax = 50 (meters) and lmax = 60
(seconds) for both our method and LSA.
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Fig. 7. Two examples of the following relationships detected by our method
in real baboon movement data.

We pick two baboons for this case study and name them A
and B. In Figure 7, we show two cases of following patterns
detected by our method. The first case happens between
8:00AM - 9:00AM on August 5, and the second case happens
between 9:00AM - 10:00AM on August 3. In both cases, B
follows A. In the first case, the following relationship lasts
about 9 minutes; in the second case, it lasts 4 minutes. The
trajectories of baboon A (indicated by the red line) and B
(indicated by the blue line) are plotted on Google Earth in
Figure 7(a) and 7(c). Readers are also encouraged to view
the animations online4 to see the dynamics of the following
relationships.

In Figure 7(b) and 7(d), the time lag varies substantially
during the following period. Our experiments suggest that, in
the real world, the time lag that characterizes the relationship
between leaders and followers can be highly variable. The
experiment results also demonstrate that our method is able to
detect following relationships despite such variation. Next, we
compare the performance of our method with other methods
using the trajectories of the same two baboons between
10:00AM - 11:00AM on August 2.
Comparison with REMO. In Figure 8, we show the following
intervals found by REMO and by our method. REMO reports
many short intervals, whereas we only report intervals that are
longer than 10 seconds. Note that red bars indicate intervals
when B follows A, whereas blue bars denote intervals when A
follows B (obtained by reversing the roles of the two objects).

In Figure 8, REMO tends to find many small segments in
a long following interval due to its strict definition of front

4http://faculty.ist.psu.edu/jessieli/icdm13/following.html
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region, while our method is able to find all the long follow-
ing intervals. REMO also reports many small non-following
intervals, such as those in the time period [800 : 2200].

In Figure 9(a), we further plot one of the following intervals
[2969 : 3221] detected by our method (see animation online).
REMO breaks this 253-second following interval into 17 small
following intervals. In Figure 9(b)-(f), we show the five inter-
vals detected by REMO with lengths longer than 10 seconds.
Even with the relaxed parameters, REMO is not able to detect
the entire following range in real movement data. Compared
with the long time intervals detected by our method, such small
segments detected by REMO clearly carry much less useful
information about the animals’ movement behaviors and are
more difficult for the field experts to interpret.

TABLE IV
TOP-3 INTERVALS OBTAINED BY THE CORRELATION-BASED METHOD

WITH VARIOUS WINDOW SIZES.

Window Size Intervals
20 [2858:2877] [382:401] [159:178]
30 [2862:2891] [260:289] [382:411]
40 [382:421] [2841:2880] [191:230]
50 [355:404] [2841:2890] [186:235]

100 [354:453] [159:258] [2961:3060]
200 [47:246] [274:473] [2706:2905]
300 [212:511] [2372:2671] [2688:2987]

Comparison with correlation-based method. In Table IV,
we show the following intervals detected by the correlation-
based method. Since this method has very high computational
complexity (i.e., O(n4)), it is not feasible to enumerate all
possible values for the parameters on a real dataset. Therefore,
in Table IV, we choose a small number of window sizes and
report the Top-3 time intervals for each window size.

There are several issues with the results. First, since this
method cannot handle varying time lags, the detected time
interval typically contains a mixture of following and non-
following relationships. For example, in Figure 10 we show
the actual time lag of the interval [354 : 453] (detected with
window size 100), which fluctuates around 0. Second, it is
impossible for the correlation-based method to detect all the
following intervals with a single fixed window size. The results
obtained by enumerating multiple window sizes are highly
redundant (see the highlighted intervals in Table IV). It is not
clear how such results can be refined to provide meaningful
insight into movement behaviors.
Comparison with LSA. In Figure 11, we compare the inter-
vals found by LSA with those found by our method. When
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Fig. 10. The actual time lag in interval [354 : 453].

dmax = 50 (meters), the results obtained by LSA include many
overlapping intervals (i.e., intervals in which both A follows
B and B follows A), such as [2969 : 3221]. However, two
objects cannot follow each other at the same time. Indeed, as
indicated by the results obtained by using our method, only
A is following B in this time interval (see animation online).
LSA incorrectly reports that B also follows A because, with
a relatively large dmax, locations on A can still form many
following pairs with locations on B.
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Fig. 11. Following intervals found by our method and by LSA.

If we reduce dmax to 25 (meters), some overlapping in-
tervals are removed. The results of using LSA are shown in
Figure 11. In this case, LSA breaks several long following
intervals into smaller ones. In addition, some true following
intervals are missed by LSA, such as the red interval between
[2300:2400]. From these results, given a fixed value for dmax,
LSA cannot identify all the long following intervals without
reporting overlapping intervals.

In summary, through this case study, we have verified that
the challenges we mentioned in Section I indeed exist in real
movement data. In addition, ours is the only method that can
successfully and efficiently retrieve the interesting following
time intervals from real movement data despite the challenges.

VI. CONCLUSION

In this paper, we address an interesting and challenging
problem in spatiotemporal data mining: detecting following
relationships. Unlike existing methods, which rely on over-
strict definitions of following patterns, our method is able to
mine general following relationships from real movement data
in linear time. Our method addresses challenges including (1)
unknown and varying time lag; (2) dynamics in trajectories;
and (3) subtle relationships that exist only in a short period
of time. Experimental results for both real and synthetic data
demonstrate the effectiveness of our method.

While our method has been focused on mining following
relationships between two moving objects, one important
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Fig. 9. Case 3: Comparison of our method with REMO on the real baboon dataset.

extension is mining leaders and followers among a large group
of moving objects. For example, an animal may lead the
migration of its herd, or a person might be followed a gang
of suspects. To mine such relationships, we could construct
a directed graph on the objects with edges indicating the
pairwise following relationships. Then, a node with a high in-
degree could be the potential leader of a group. In the future,
we plan to develop more efficient algorithms which do not
require computing the pairwise relationships.
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