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Abstract

Trajectory clustering has played a crucial role in data analysis since it reveals
underlying trends of moving objects. Due to their sequential nature, trajectory data
are often receivedincrementally, e.g., continuous new points reported by GPS sys-
tem. However, since existing trajectory clustering algorithms are developed for
static datasets, they are not suitable for incremental clustering with the following
two requirements. First, clustering should be processed efficiently sinceit can be
frequently requested. Second, huge amounts of trajectory data must be accommo-
dated, as they will accumulate constantly.

An incremental clustering framework for trajectoriesis proposed in this paper.
It contains two parts: online micro-cluster maintenance and offline macro-cluster
creation. For online part, when a new bunch of trajectories arrives, each trajec-
tory is simplified into a set of directed line segments in order to find clusters of
trajectory subparts. Micro-clusters are used to store compact summaries of simi-
lar trajectory line segments, which take much smaller space than raw trajectories.
When new data are added, micro-clusters are updated incrementally to reflect the
changes. For offline part, when a user requests to see current clustering result,
macro-clustering is performed on the set of micro-clusters rather thanon all trajec-
tories over the whole time span. Since the number of micro-clusters is smaller than
that of original trajectories, macro-clusters are generated efficiently toshow clus-
tering result of trajectories. Experimental results on both synthetic and real data
sets show that our framework achieves high efficiency as well as high clustering
quality.

1 Introduction

In recent years, the collection of trajectory data has become increasingly common.
GPS chips implanted in animals have enabled scientists to track their study objects as
they travel. RFID technology installed in vehicles has enabled traffic officers to track
road traffic in real-time. With such data, trajectory clustering is a very useful task. It
discovers movement patterns that help analysts see overalltrends in the trajectories.

The work was supported in part by the U.S. National Science Foundation grants IIS-08-42769 and IIS-
09-05215, and a grant from the Boeing company. Any opinions, findings, and conclusions expressed here
are those of the authors and do not necessarily reflect the views of the funding agencies.
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For example, analysis of bird feeding and nesting habits is an important task. With the
help of GPS, scientists can tag and track birds as they fly around. Such tracking devices
report the trajectories of animals on a continual basis (e.g., every minute, every hour).
With such data, scientists can study the movement habits (i.e., trajectory clusters) of
birds.

One important property with tracking application is theincrementalnature of the
data. The data will grow to be in huge size as time goes by. Consider the following real
case of moving vehicle data which is used in experiment evaluation.

Example 1 A taxi tracking system tracks the real-time locations of more than 5,000
taxis in San Francisco. With the sensor installed on each taxi, the system is able to
receive information about current location(longitude andlatitude) of each taxi with a
precise timestamp. The system accumulates the updated dataevery minute. After a
single day, the system will collect totally 7.2 million points with 1,440 points for each
taxi. After a week, the number of points will be accumulated to 50.4 million points.

For static data sets, there are many existing trajectory clustering algorithms de-
veloped. However, to the best of our knowledge, none of them targeted at solving
clustering problem for incremental huge trajectory data aspointed out in Example 1.
Gaffneyet al. [9, 8] proposed a probabilistic clustering technique for trajectories. The
problem with this statistical approach is that it considerstrajectories as a whole. But in
the real cases, one trajectory can be very long and complicated while subparts of differ-
ent trajectories may share similar paths. These common paths of sub-trajectories could
be interesting trajectory clusters. Leeet al. [13] proposed a trajectory clustering algo-
rithm TRACLUS based on the partition-and-group framework.This is the first work
that mines clusters from a sequence of sub-trajectories. Itfirst partitions trajectories
into several line segments with least information loss, then group them into clusters.
The followed work of Leeet al.[12, 11] on trajectory outliers detection and trajectory
classification based on the idea of sub-trajectories shows that it is necessary and im-
portant to mine interesting knowledge on partial trajectories rather than on the whole
trajectories. However, neither of these algorithms is ableto handle the case when the
input data is continuously updated since they require the complete input data be avail-
able.

Facing continuous data, previous methods will take long time to retrieve all the data
and re-compute the trajectory cluster over the whole huge data set. If the users want to
track real-time clusters every hour, it is almost impossible to finish computation within
the time period threshold, especially considering the datasize still keeps growing every
minute. Therefore, trajectory data must be accommodated incrementally.

An important point to notice is thatnew data will only affect local shifts. It will
not have big influence on clusters in the areas which are far away from the local area
of new data. So, a more sensible approach to accommodate hugeamount of data is
to maintain and adjustmicro-clustersof the trajectory data. Micro-clusters are tight
clusters over small local regions. Due to their small sizes,they are more flexible to
changes in the data source. Yet they still achieve the desired space savings of clusters by
summarizing extremely similar input trajectories. These properties make them suitable
for incremental clustering.

This work proposes anincremental Trajectory Clustering using Micro- and Macro-
clusteringframework called TCMM. It makes the following contributions towards an
incremental trajectory clustering solution. First, trajectories are simplified by partition-
ing into line segments to find the clusters of sub-trajectories. Second, micro-clusters of
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the partitioned trajectories are computed and maintained incrementally. Micro-clusters
hold and summarize similar trajectory partitions at very fine granularity levels. They
use very little space and can be updated efficiently. And finally, micro-clusters are used
to generate the macro-clusters(i.e., final trajectory clusters).

The TCMM framework is truly incremental in the sense that micro-clusters are
incrementally maintained as more and more data are received. Because their granular-
ity level is low, they can adjust to all types of change in the input data. The number
of micro-clusters is much smaller than that of the original input data. When the user
wants to compute the full trajectory clusters, micro-clusters are combined together to
form the macro-clusters in higher granularity level.

The rest of this paper is organized as follows. Section 2 formally defines the prob-
lem and gives an outline of the TCMM framework. Sections 3.1 and 3.2 discuss the
micro-clusters and the macro-clusters, respectively. Experiments are shown in Section
4. Related work is analyzed in Section 5. Finally, the paper concludes in Section 6.

2 General Framework

2.1 Problem Statement

The data to be studied in this work will be in the context of anincremental data source.
That is, new batches of trajectory data will continuously befed into the clustering al-
gorithm (e.g., from new data recordings). The goal is to process such data and produce
clustersincrementallyandnot have to re-compute from scratch every time.

Let the input data be represented by a sequence of time-stamped trajectory data
sets: 〈It1 , It2 , . . .〉 where eachIti

is a set of trajectories being presented at timeti.
EachIti

= {TR1, TR2, . . . , TRnT R
} where eachTRj is a trajectory. A single tra-

jectoryTRj is often represented as a polyline, which is a sequence of connected line
segments. It can be denoted asTRj = p1p2 . . . plenj

, where each pointpi is a time-
stamped point.TRj can be further simplified to derive a new polyline with fewer
points while its deviation from the original polyline is below some threshold. The sim-
plification techniques have been studied extensively in previous work [13, 5] . In this
paper, we use the simplification technique in our previous paper [13]. Simplified trajec-
tory is represented asTRsimplified

j = L1L2 . . . Ln, whereLi andLi+1 are connected
directed line segments (i.e., trajectory partitions).

Given such input data, the goal is to produce a set of clustersO = {C1, C2, . . . , CnC
}.

A cluster is a set of directed trajectory line segmentsCi = {L1, L2, · · · , Lln}, where
Lk is a directed line segment from certain simplified trajectory TRsimplified

j at certain
time stampti. Because we do clustering on line segments rather than wholetrajec-
tories, the clusters we find are actually sub-trajectory clusters, which are the popular
paths visited by many moving objects.

2.2 TCMM Framework

Figure 1 shows the general data flow of TCMM. Thex-axis represents the progress of
time and they-axis shows the progress of data processing. As the figure illustrates,
input data are received continuously.

The first step is micro-clustering. Because there is an infinite data source, it is
impossible to store all the preprocessed input data and compute clusters from them on
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Figure 1: The Framework

request. To solve this problem, this work introduces the concept oftrajectory micro-
clusters. The term “micro” refers to the extreme tightness of the clusters. The idea is
to only cluster at very fine granularity. Hence, the number ofmicro-clusters is much
larger than that of final trajectory clusters. Figure 1 showsthe micro-clusters in the
second row. Section 3.1 will discuss them in detail.

The second step is macro-clustering, which will be discussed in detail in Section
3.2. Compared to the micro-clustering step, which are updated constantly as new data
is received, the macro-clustering step isonly evoked after receiving the user’s request
of trajectory clusters. This step will then use the micro-clusters as input.

3 Trajectory Clustering using Micro- and Macro-clustering

3.1 Trajectory Micro-Clustering

As newly arrived trajectories will only affect local clustering result, trajectory micro-
clusters (or just micro-clusters) are introduced here to maintain a fine-granularity clus-
tering. Micro-clusters (defined in Section 3.1.1) are much more restrictive than the
final clusters in the sense that each micro-cluster is meant to only hold and summa-
rize the information of local partitioned trajectories. Micro-clustering will enable more
efficient computation of final clusters comparing with computation from original line
segments.

Algorithm 1 shows the general work flow of generating and maintaining micro-
clusters. It proceeds as follows. After a batch of new trajectories arrive, we compute
the closest micro-clusterMCk for each line segmentLi in every trajectory. If the
distance betweenLi andMCk is less than a distance threshold (dmax), Li will be
inserted intoMCk. Otherwise, a new micro-clusterMCnew will be created forLi.
If the creation of the new micro-cluster results in the overload of the total number of
micro-clusters, some micro-clusters will be merged. The rest of this section discuss
these steps in detail.

3.1.1 Micro-Cluster Definitions

Each trajectory micro-cluster will hold and summarize a setof partitioned trajectories,
which are essentially line segments.
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Algorithm 1 Trajectory Micro-Clustering

1: Input :New trajectoriesItcurrent
= {TR1, TR2, · · · , TRnTR} and existing micro-

clustersMC = {MC1,MC2, . . . ,MCnMC
}.

2: Parameter: dmax

3: Output : UpdatedMC with new trajectories inserted.
4: Algorithm :
5: for everyTRi ∈ Itcurrent

do
6: for everyLj ∈ TRi do
7: Find the closestMCk to line segmentLj /* Section 3.1.2 */
8: if distance(Lj , MCk) ≤ dmax then
9: Add Lj into MCk and updateMCk accordingly

10: else
11: Create a new micro-clusterMCnew for Lj ;
12: if size ofMC exceeds memory constraintthen
13: Merge micro-clusters inMC /* Section 3.1.3 */

Definition 1 (Micro-Cluster) A trajectory micro-cluster (or micro-cluster)for a set of
directed line segmentsL1, L2, · · · , LN is defined as the tuple: (N , LScenter, LSθ,
LSlength, SScenter, SSθ, SSlength), whereN is the number of line segments in the
micro-cluster,LScenter, LSθ, andLSlength are the linear sums of the line segments’
center points, angles and lengths respectively,SScenter, SSθ, andSSlength are the
squared sums of the line segments’ center points, angles andlengths respectively.

The definition of trajectory micro-cluster is an extension of the cluster feature vec-
tor in BIRCH [16]. The linear sumLS represents the basic summarized information
of line segments(i.e., center point, angle and length). The square sumSS will be used
to calculate the tightness of micro-cluster which will be discussed in Section 3.1.3.
The additive nature of the definition makes it easy to add new line segments into the
micro-cluster and merge two micro-clusters. Meanwhile, the definition is designed to
be consistent with the distance measure of line segments in Section 3.1.2.

Also, every trajectory micro-cluster will have arepresentative line segment. As the
name suggests, this line segment is the representative linesegment of the cluster. It is
an “average” of sorts.

Definition 2 (Representative Line Segment)Therepresentative line segmentof a micro-
cluster is represented by the starting points and ending pointe. s ande can be com-
puted from the micro-cluster features.

s = (centerx −
cos θ

2
len, centery −

sin θ

2
len)

e = (centerx +
cos θ

2
len, centery +

sin θ

2
len)

wherecenterx = LScenterx
/N , centery = LScentery

/N , len = LSlength/N , and
θ = LSθ/N .

Figure 2 shows an example. There are four line segments in themicro-cluster,
which are drawn in thin lines. The representative line segment of the micro-cluster is
drawn in a thick line.
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Input Line Segment
Representative Line Segment

Figure 2: Representative Line Segment Figure 3: Line Segments Distance

3.1.2 Creating and Updating Micro-Clusters

When a new line segmentLi is received, the first task is to find the closest micro-
clusterMCk that can absorbLi (i.e., Line 7 in Algorithm 1). If the distance between
Li andMCk is less than the distance thresholddmax, Li is then added toMCk and
MCk is updated accordingly; if not, a new micro-cluster is created (i.e., Line 8 to 11
in Algorithm 1). This section will discuss how these steps are performed in detail.

Before proceeding, the distance between a line segment and amicro-cluster is de-
fined. Since a micro-cluster has its representative line segment, the distance is in fact
defined between two line segments, which is composed of threecomponents: the center
point distance (dcenter), the angle distance (dθ) and the parallel distance (d‖) . The dis-
tance is adapted from a similarity measure used in the area ofpattern recognition [10],
which is a modified line segment Hausdorff distance. The similar distance measure is
also used in [13]. Different from [13], we use componentdcenter instead ofd⊥. The
reason to choosedcenter is because it is a more balanced measure betweendθ andd‖
and it is easier to adapt the concept of extent, which will be introduced in Section 3.1.3.

Let si andei be the starting and ending points ofLi; similarly for sj andej with
Lj . Without loss of generality, the longer line segment is assigned toLi, and the shorter
one toLj . Figure 3 gives an intuitive illustration of the distance function.

Definition 3 The distance function is defined as the sum of three components:

dist(Li, Lj) = dcenter(Li, Lj) + dθ(Li, Lj) + d‖(Li, Lj)

The center distance:

dcenter(Li, Lj) =‖ centeri − centerj ‖ ,

where‖ centeri−centerj ‖ is the Euclidean distance between center points ofLi and
Lj .
The angle distance:

dθ(Li, Lj) =

{

‖ Lj ‖ × sin(θ), 0o ≤ θ < 90o

‖ Lj ‖, 90o ≤ θ ≤ 180o ,

where‖ Lj ‖ denote length ofLj , θ(0o ≤ θ ≤ 180o) denote the smaller intersecting
angle betweenLi andLj . Note that the range ofθ is not [0o, 360o) becauseθ is the
value of smaller intersecting angle without considering the direction.
The parallel distance:

d‖(Li, Lj) = min(l‖1, l‖2),

wherel‖1 is the Euclidean distances ofps to si andl‖2 is that ofpe to ei. ps andpe are
the projection points of the pointssj andej ontoLi respectively.
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After finding the closest micro-clusterMCk, if the distance fromLi is less than
dmax, Li is inserted into it, and the linear and square sums inMCk are updated ac-
cordingly. Because they are just sums, the additivity property applies and the update is
efficient. If the distance between the nearest micro-cluster andLi is bigger thandmax, a
new micro-cluster will be created forLi. The initial measures in the new micro-cluster
is simply derived from line segmentLi (i.e., center point, theta, and length).

3.1.3 Merging Micro-Clusters

In real world applications, storage space is always a constraint. The TCMM framework
faces this problem with its micro-clusters as shown in Line 12 to 13 of Algorithm 1.
If the total space used by micro-clusters exceeds a given space constraint, some micro-
clusters have to be merged to satisfy the space constraint. Meanwhile, if the number
of micro-clusters keeps increasing, it will affect the efficiency of algorithm because
the most time-consuming part is finding the nearest micro-cluster. And what is most
important, it may be unnecessary to keep all the micro-clusters since some of the micro-
clusters may become closer after several rounds of updates.Therefore, the algorithm
demands merging close micro-clusters when necessary to speed up efficiency and save
storage. Obviously, pairs of micro-clusters that contain similar line segments are better
candidates for merging because the merge results in less information loss.

One way to compute the similarity between two micro-clusters is to calculate the
distance between the representative line segments of the micro-clusters. Though intu-
itive, this method fails to consider the tightness of the micro-clusters. Figure 4 shows an

Merge

Tight micro−cluster A

Tight micro−cluster B

(a) Merging tight micro-clusters

Loose micro−cluster D

Merge

Loose micro−cluster C

(b) Merging loose micro-clusters

Figure 4: Merging micro-clusters

example that how tightness might effect distance between two micro-clusters. Figure
4(a) shows two tight micro-clusters and the micro-cluster after merging them. Fig-
ure 4(b) shows the case for two comparatively loose micro-clusters. We can see that
micro-clusterA and micro-clusterC have same representative line segments, and so do
micro-clustersB andD. Thus the distance between micro-clusterA andB should be
the same as that between micro-clustersC andD if we measure the distance only using
representative line segments. In this case, the chance to merge micro-clustersA andB
is equal to that of merging micro-clustersC andD. However, we actually prefer merg-
ing micro-clustersC andD. There are two reasons: on one hand, if both micro-clusters
are very tight, they may not be good candidates for merging because it would break that
tightness after the merge. On the other hand, if they are bothloose, it may not do much
harm to merge them even if their representative line segments are somewhat far apart.
Hence, a better approach would be to consider theextentof the micro-clusters and use
that information in computing the distance between micro-cluster.
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In the following parts, we will first introduce the way to compute micro-cluster
extent, then give definitions of the distance between micro-clusters with extent infor-
mation. Lastly, we will discuss how to merge two micro-clusters.

Micro-Cluster Extent The extent of a micro-cluster is an indication of its tightness.
Recall that micro-clusters are represented by tuples of theform: (N , LScenter, LSθ,
LSlength, SScenter, SSθ, SSlength), which maintain linear and square sums of center,
angle and length. The extent of the micro-cluster also includes three partextentcenter,
extentθ andextentlength to measure the tightness of three basic facts of a trajectory
micro-cluster. The extents are the standard deviation thatcalculated from its corre-
spondingLS andSS.

Lemma 1 Given a set of distance values,D = (d1, d2, ..., dn). LetLS =
∑

i=1..n di,

andSS =
∑

i=1..n(di)
2. The standard deviation of the distances isσ =

√

n×SS−(LS)2

n2 .

Proof 1 Refer to [16].

Using Lemma 1, we give a formal definition for extent of a micro-cluster:

extentα =

√

N × SSα − LS2
α

N2

where symbolα representscenter, θ, or length andN is the number of line segments
in the micro-cluster.

centerextentinput line segment
representative line segment

(a) Center extent

θextent

(b) θ extent

lenextent

(c) Length extent

Figure 5: Micro-Cluster Extent

To give an intuition of extent concept, Figure 5 shows an example ofextentcenter,
extentθ and extentlength. Figure 5(a) states that “most” center points of the line
segments stored in this micro-cluster are within the circleof radiusextentcenter. Fig-
ure 5(b) illustrates that “most” angles vary within a range of extentθ and Figure 5(c)
reflects the uncertainty of length.

Micro-Cluster Distance with Extent With the extents properly defined, we can now
incorporate them into the distance function. Recall that the intention of extent was to
adjust the distance function based on the tightness of micro-clusters. For instance, let
d1,2 be the distance between micro-clustersMC1 andMC2 according to the distance
function defined previously. If these two micro-clusters are both “tight” (i.e., hav-
ing zero or very small extent), thend1,2 indeed represents the distance between them.
However, if these two micro-clusters are both “loose” (i.e., having large extent), then
their “true” inter-cluster distance should actually beless thand1,2. This is because
the line segments at the borders of the two micro-clusters are likely to be much closer
thand1,2. With respect to merging micro-clusters, this allows loosemicro-clusters to
be more easily merged and vice-versa. The adjustment of the distance function using
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(a) Center distance with extent (b) Parallel distance with extent

(c) Angle distance with extent

Figure 6: Line Segments Distance with Extent

extent is relatively simple. Whenever possible, extent is used to reduce the distance
between the representative line segments of micro-clusters.

To measure the distance between micro-clusteri and micro-clusterj, it is equiva-
lent to measure the distanced∗(L∗

i , L
∗
j ) between the representative line segmentsL∗

i

with extenti andL∗
j with extentj . Figure 6 shows an intuitive example of distance

measure with extent. For example, in Figure 6(a), the distance between the centers
is the distance between representative line segments minusthe center extents of two
micro-clusters. The formal definition is given as follows based on the modification of
distance measure between line segments (i.e., Definition 3). To avoid the redundancy
in presentation, the symbols explained in Definition 3 are not repeated in Definition 4.

Definition 4 The distance betweenL∗
i and L∗

j contains three parts: center distance
d∗center, angle distanced∗θ and parallel distanced∗‖.

dist(L∗
i , L

∗
j ) = dcenter(L

∗
i , L

∗
j ) + dθ(L

∗
i , L

∗
j ) + d‖(L

∗
i , L

∗
j )

The center distance:

d∗center(L
∗
i , L

∗
j ) = max

(

0, ‖centeri − centerj‖ − extenticenter − extentjcenter

)

The angle distance:

θ∗ = θ − (extentiθ + extentjθ)

d∗θ(L
∗
i , L

∗
j ) =

{

‖ L∗
j ‖ × sin(θ∗), 0o ≤ θ∗ < 90o

‖ L∗
j ‖, 90o ≤ θ∗ ≤ 180o

The parallel distance:

d∗‖(L
∗
i , L

∗
j ) = max

(

0,min(l‖1, l‖2) − (extentilength + extentjlength)/2
)

,

whereextentjlength is the projection ofextentjlength ontoL∗
i .

Note that the distances defined between two representative line segments with extent
are smaller than those defined between two original ones. Andthe distance may be
equal to zero when there is an overlap between representative line segments with extent.
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Merging Algorithm The final algorithm of merging micro-clusters is as follows.
Given M micro-clusters, the distance between any two micro-clusters is calculated.
They are then sorted from the most similar to the least similar. The most similar pairs
are the best candidate for merging since merging them resultin the least amount of
information loss. They are merged until the number of micro-clusters satisfy the given
space constraints.

3.2 Trajectory Macro-Clustering

The last step in the TCMM framework produces the overall trajectory clusters. While
micro-clustering is processed with a new batch of data comesin, macro-clustering is
evokedonly whenit is called upon by the user.

Since the distance between micro-clusters is defined in Definition 4, it is easy to
adapt any clustering method on spatial points. We simply need to replace the distancce
between spatial points with the distance between micro-clusters. In our framework,
we use density-based clustering [7], which is also used in TRACLUS [13]. The clus-
tering technique in macro-clustering step is the same as theclustering algorithm in
TRACLUS. The only difference is that macro-clustering in TCMM is performed on
the set of micro-clusters rather than the set of trajectory partitions as in TRACLUS.
The micro-clusters are clustered through a density-based algorithm which discovers
maximally “density-connected” components, each of which forms a macro-cluster.

4 Experiments

This section tests the efficiency and effectiveness of the proposed framework under a
variety of conditions with different datasets. The TCMM framework and the TRA-
CLUS [13] framework are both implemented using C++ and compiled with gcc. All
tests were performed on a Intel 2.4GHz PC with 2GB of RAM.

4.1 Synthetic Data

(a) Micro-clusters at snapshot 1 (b) Micro-clusters at snapshot 2

Figure 7: Micro-clusters from synthetic data

As a simple way to quickly test the “accuracy” of TCMM, synthetic trajectory data
is generated. Objects are generated to move along pre-determined paths with small
perturbations (< 10% relative distance from pre-determined points).15% trajectories
are random noises added to the data. Figure 7 shows the resultof incremental micro-
clustering at two different snapshots. Figure 7(a) shows raw trajectories in gray; one
can clearly see the trajectory clusters. The extracted micro-clusters are drawn with
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red/bold lines; they match the intuitive clusters. Figure 7(b) shows the trajectories and
extraction results for a later snapshot. Again, they match the intuitive clusters.

4.2 Real Animal Data in Free Space

Next, clusters are computed from deer movement data1 in Year 1995. This data set
contains 32 trajectories with about20, 000 points in total. The dataset size of animal
is considerably small due to the high expense and technological difficulties to track
animals. But it is worth studying animal data because the trajectories are in free space
rather than on restricted road network. In Section 4.3, a further evaluation on a much
larger vehicle dataset containing over7, 000 trajectories will be conducted.

To the best of our knowledge, there is no any other incremental trajectory cluster-
ing algorithm. So the results of TCMM will be compared with TRACLUS [13], which
does trajectory clustering over the whole data set. Since micro-clusters in TCMM sum-
marize original line segments information with some information loss, the clustering
result on micro-clusters might not be as real as TRACLUS. So the cluster result from
TRACLUS is used as a standard to test the accuracy of TCMM. Meanwhile, it is im-
portant to show the efficiency against TRACLUS while both results are similar.

We adapt performance measure, sum of square distance (SSQ),from CluStream [1]
to test the quality of clustering results. Assume that thereare a total of n line segments
at the current timestamp. For each line segmentLi, we find the centroid (i.e., represen-
tative line segment)CLi

of its closest macro-cluster, and computed(Li, CLi
) between

Li andCLi
. The SSQ at timestamp is equal to the sum ofd2(Li, CLi

) and the average
SSQ isSSQ/n.
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Figure 8: Effectiveness Comparison (Deer)

 50

 10

 0.5

 0.1
 20064 16029 11718 6900

R
un

ni
ng

 T
im

e 
(s

ec
on

ds
)

Number of Trajectory Points Loaded

TCMM
TRACLUS

Figure 9: Efficiency Comparison (Deer)

As shown in Algorithm 1, there is only one parameterdmax in micro-clustering step
and we set it to10. The parameter sensitivity is analyzed and discussed in Section 4.4.
For macro-clustering and TRACLUS, they use the same parametersε andMinLns.
Here,ε is set to50 andMinLns is set to8.

Figure 8 shows the quality of clustering results. Comparingwith TRACLUS, the
average SSQ of TCMM is slightly higher. In the worst case, theaverage SSQ of TCMM
is 2% higher than TRACLUS. But the processing time of TCMM is significantly faster
than TRACLUS. To process all the20, 000 points, TCMM only takes0.7 seconds
while TRACLUS takes43 seconds. The reason is that it is much faster to do clustering
over micro-clusters rather than over all the trajectory partitions. With the deer dataset,
at last, the number of trajectory partitions (3390) is much more than the number of
micro-clusters (324) in total.

1http://www.fs.fed.us/pnw/starkey/data/tables/
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4.3 Real Traffic Data in Road Network

Real world GPS recorded data from a taxi company in San Francisco is used to test
the performance of TCMM. The data set is huge and keeps growing as time goes by.
It contains 7,727 trajectories(100, 000 points) of taxis as they travel around the city
picking up and dropping off passengers.

Micro Clusters

Macro Clusters

TRACLUS
Time 0 Time 1 Time 2

Figure 10: Taxi Experiment

Figure 10 shows the visual clustering result of taxi data. First row and second row
show the micro-clusters (dmax set to 800) and macro-clusters (ε set to 50 andMinLns
set to 8). Last row shows cluster result from TRACLUS. Time 0,1, and 2 correspond
to the timestamps respectively when 52317, 74896, and 98002trajectory points have
been loaded. As we can see from Figure 10, the results from TCMM and TRACLUS
are similar except very few differences. The similar clustering performance is further
proved in Figure 11, where the average SSQ of TCMM is only slightly higher than that
of TRACLUS (2% higher in worst case and1.4% higher on average).

Regarding to efficiency issue, Figure 12 shows the time needed to process the data
in 4 increments with TCMM and TRACLUS. Compared to previous data sets, TRA-
CLUS is substantially slower this time due to the larger dataset size. To process all
the data, TRACLUS takes about 4.6 hours while TCMM only takesabout 7 minutes
to finish. This is because the number of trajectory partitions (52,600) is much larger
than the number of micro-clusters (2,013). It means that TCMM is much more efficient
than TRACLUS as data set is getting bigger, while at the same time, the effectiveness
remains the same as TRACLUS.
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Figure 11: Effectiveness Comparison(Taxi)
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Figure 12: Efficiency Comparison(Taxi)
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4.4 Parameter Sensitivity
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Figure 13: Effectiveness withdmax
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Figure 14: Efficiency withdmax

The micro-clustering step of TCMM has the nice property thatit only requires one
parameter:dmax. A largedmax builds micro-clusters that are large in individual size
but small in overall quantity, whereas a smalldmax has the opposite effect. If we
setdmax = 0, TCMM is actually TRACLUS because each line segment will form a
micro-cluster itself. Then the macro-clustering applied on micro-clusters is exactly the
one applied on original line segments. Therefore, the smaller thedmax is, the better
the quality of clustering should be but the longer processing time is needed. At the
same time, if we setdmax larger, the algorithm runs faster but loses more information
in micro-clustering. Hence there is a trade-off between effectiveness and efficiency.

We use taxi datasets to study the parameter sensitivity of our algorithm. Figure 13
and Figure 14 show the performance of TCMM with differentdmax. We can see that
when dmax = 600, the average SSQ is closer to that of TRACLUS, which shows
that it has more similar performance as TRACLUS. But it also takes longer time to do
clustering whendmax = 600. However, comparing with TRACLUS, the time spent on
incremental clustering is still significantly shorter.

5 Related Work

Clustering has been studied extensively in machine learning and data mining. A num-
ber of approaches have been proposed to processpoint data in various conditions and
produce clusters of many different types.k-means [14] is a partitioning algorithm that
repeatedly partitions the data until some criterion is met.BIRCH [16, 3] is another
approach that produces hierarchical clusters. DBSCAN [7] and OPTICS [2] are two
algorithms that cluster the data based on local density neighborhoods.

Some of the ideas presented in the above algorithms are adapted in this work. The
micro-clustering step in TCMM share the idea of micro-clustering in BIRCH [16].
However, BIRCH [16] cannot handle trajectory clustering. The clustering feature in
TCMM has been extended to exactly describe a line-segment cluster by including three
kinds of information. Also, unlike BIRCH, our framework does not maintainraw
trajectories to make it more suitable for incremental data sources. The data bubble
[3] is an extension of the BIRCH framework and introduces theidea of the extent.
TCMM also uses the extent in its micro-cluster, but the definition has been changed to
accommodate trajectories.

Trajectory clustering has been studied in various contexts. Gaffneyet al. [9, 4, 8]
proposes several algorithms for model-based trajectory clustering. These algorithms
only work on whole trajectories and cannot find similar sub-trajectories. TRACLUS
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[13] is a trajectory clustering algorithm which does cluster sub-trajectories. TRACLUS
performs density-based clustering over the entire set of sub-trajectories. However, all
of these algorithms cannot efficiently handleincrementaldata. They are not suitable
for incremental data since clusters are re-calculated fromscratch every time.

CluStream [1] studies clustering dynamic data streams. It uses a two-step process to
first compute micro-clusters and then produce macro-clusters when need. Our method
adapts a similar micro-/macro-clustering framework for trajectory data. However, our
method so far handles only incremental data but not trajectory streams. This is be-
cause sub-trajectory micro-clustering has to wait for nontrivial number of new points
accumulated to form sub-trajectories, which needs addition buffer space and waiting
time. Moreover, the processing of sub-trajectories is moreexpensive and additional
processing power is needed for real time stream processing.Thus, the extension of our
framework for trajectory streaming left for future research.

Esteret al. [6] proposes the Incremental DBSCAN algorithm, which is an exten-
sion of DBSCAN for incremental data. Here, the final clustersare directly updated
based on new data. We believe our two-step process is more flexible since any cluster-
ing algorithm can be employed for macro-clustering, whereas IncrementalDBSCAN is
dedicated to DBSCAN. More recently, Sacharidiset al. [15] discusses the problem of
online discovering hot motion. The basic idea is to delegatepart of the path extraction
process to objects, by assigning to them adaptive lightweight filters that dynamically
suppress unnecessary location updates. Their problem is different from ours in two
ways: first, they are trying to find recent hot paths whereas our clusters target at whole
time span; and second, they require the objects in a moving cluster to be close enough
to each other at any time instant during a sliding window of W time units but we are
more from geometric point of view to measure the distance between trajectories.

6 Conclusions

In this work, we have proposed the TCMM framework for incremental clustering of
trajectory data. It uses a two-step process to handle incremental datasets. The first
step maintains a flexible set of micro-clusters that is updated continuously with the
input data. Micro-clusters compress the infinite data source to a finite manageable size
while still recording much of the trajectory information. The second step, which is on-
demand, produces the final macro-clusters of the trajectories using the micro-clusters
as input. Compared to previous static approaches, the TCMM framework is much more
flexible since it does not require all of the input data at once. The micro-clusters provide
a summary of the trajectory data that can be updated easily with any new information.
This makes it more suitable for many real world application scenarios.
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