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Abstract Periodicity is one of the most frequently occurring phenomena for moving
objects. Animals usually have periodic movement behaviors, such as daily foraging
behaviors or yearly migration behaviors. Such periodic behaviors are the keys to
understand animal movement and they also reflect the seasonal, climate, or environ-
mental changes of the ecosystem. However, periodic behaviors could be complicated,
involving multiple interleaving periods, partial time span, and spatiotemporal noises
and outliers. In this paper, we address the problem of mining periodic behaviors for
moving objects. It involves two sub-problems: how to detect the periods in com-
plex movements, and how to mine periodic behaviors. A period is usually a single
value, such as 24 h. And a periodic behavior is a statistical description of the peri-
odic movement for one specific period. For example, we could describe an animal’s
daily behavior in the way that “From 6 pm to 6 am, it has 90% probability staying at
location A and from 7 am to 5 pm, it has 70% probability staying at location B and
30% probability staying at location C”. So our tasks is to first detect the periods and
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then describe each periodic behavior according to different periods. Our main assump-
tion is that the observed movement is generated from multiple interleaved periodic
behaviors associated with certain reference locations. Based on this assumption, we
propose a two-stage algorithm, Periodica, to solve the problem. At the first stage,
the notion of reference spot is proposed to capture the reference locations. Through
reference spots, multiple periods in the movement can be retrieved using a method that
combines Fourier transform and autocorrelation. At the second stage, a probabilistic
model is proposed to characterize the periodic behaviors. For a specific period, peri-
odic behaviors are statistically generalized from partial movement sequences through
hierarchical clustering. Finally, we show two extensions to the Periodica algorithm:
(1) missing data interpolation, and (2) future movement prediction. Empirical studies
on both synthetic and real data sets demonstrate the effectiveness of the proposed
method.

Keywords Data mining · Object movements · Periodicity · Pattern analysis ·
Animal and environmental studies

1 Introduction

With the increasing interests in ecological and environmental studies based on animal
migration and movements (Sugden et al. 2006; Getz and Saltz 2008; Nathan et al.
2008), technologies haven been developed to efficiently track animals (Cooke et al.
2004), and statistical methods have been developed for analyzing movement data
(Dalziel et al. 2008; Patternson et al. 2008; Wittemyer et al. 2008). In recent years,
the fast development of positioning technology (GPS) makes animal tracking easier,
with higher resolution and longer duration. For example, MoveBank1 is an organiza-
tion for biologists to share their animal movement data. They now have more than a
hundred of animal movement datasets, including birds, raptors, and herbivores. It is
interesting yet challenging for animal scientists to mine spatiotemporal patterns from
the movement data. The movement patterns are the natural reflections of ecosystems,
such as the quantity and quality of forage (Polis et al. 1997), nutrient distribution and
cycles (McNaughton et al. 1997), intra- and inter-specific disease transmission (Cross
et al. 2005), and the distribution and population dynamics of animals (McNaughton
et al. 1985).

In this work, we focus on one of the most basic movement patterns, periodic behav-
iors. For example, large herbivores may use spatial memory to locate preferred food
patches and return to high quality foraging locations (Hewitson et al. 2005). Returns
to previously grazed areas may be a useful foraging strategy for large herbivores to
consume regrowing vegetation in its high primary productivity stage (McNaughton
et al. 1985). Moreover, these returns may accelerate nutrient cycling in highly grazed
sites (McNaughton et al. 1997). Another example is bird migration. Golden eagles
start migrating to South America in late October and go back to Alaska around mid
March (McIntyre and Adams 1999). The selection of migration time and locations

1 www.MoveBank.org.
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Mining periodic behaviors

Periodic Behavior #1

Periodic Behavior #3 

Periodic Behavior #2 

  (Period: year; Time span: whole)

  April−August in Alaska

  (Period: day; Time span: October−Feburary)

  (Period: day; Time span: April−August)

  19:00−7:00 at nest in North
  8:00−18:00 at foraging place

  October−Feburary in South America

 8:00−18:00 at foraging place
 19:00−7:00 at nest in South

Periodic behaviors

...

...

1997−07−24 20:50 (−149.007, 63.809)

1998−06−23 03:07 (−157.774, 70.431)

Date Time (Longitude, Latitude)

1997−07−24 21:23 (−148.897, 63.766)
1997−07−27 22:30 (−148.967, 63.824)
1997−07−31 02:52 (−149.026, 63.803)

1998−07−26 06:01 (−158.862, 70.431)
1998−06−29 02:18 (−158.895, 70.404)
1998−07−02 07:32 (−159.119, 70.366)

Raw movement data of one golden eagle

Fig. 1 Periodic movement behaviors

is a reflection of temperature change and foraging quality. Such repeating behaviors
in animal movement are referred to as “periodic behaviors”. Discovery of periodic
behaviors should contribute to our understanding of the habitat requirements of ani-
mals, the factors governing their space-use patterns, and interaction with the ecosystem
(Bar-David et al. 2009). This understanding could lead to strategies for conservation
and management of the animal populations and landscapes of interest. And thus, it
should ultimately benefit the sustainability of an ecosystem.

However, mining periodic movement behaviors from long and noisy history data
of a moving object is a challenging problem. For example, Fig. 1 shows the raw move-
ment data of a golden eagle and the expected periodic behaviors. Based on manual
examination of the raw data (on the left), it is almost impossible to extract the periodic
behaviors (on the right). In fact, the periodic behaviors are quite complicated. There are
multiple periods and periodic behaviors that may interleave with each other. Mining
periodic behaviors can bridge the gap between raw data and semantic understanding
of the data. The mining task includes two major issues.

First, the periods (i.e., the regular time intervals in a periodic behavior) are usually
unknown. Even though there are many period detection techniques proposed in signal
processing area, such as Fourier transform and autocorrelation, these methods cannot
be directly applied to the spatiotemporal data. This is because the moving object will
not repeat the movement by re-appearing at exactly the same point (in terms of (x, y))
on exactly the same time instance of a period. Besides, there could be multiple periods
existing at the same time, such as the golden eagle may have one period as “day” and
another as “year”. If we consider the movement sequence as a whole, the longer period
(i.e., year) will have fewer repeating times than the shorter period (i.e., day). So it is
hard to select a threshold to find all the periods. Surprisingly, there is no previous work
that can handle the issue about how to detect multiple periods from the noisy moving
object data. To the best of our knowledge, there is only one work (Bar-David et al.
2009) that addresses the detection of periods for moving objects. It directly applies the
Fourier transform on moving object data by transforming a location onto a complex
plane. However, as shown in the toy example in Sect. 4, this method does not work in
the presence of spatial noise.

Second, even if the periods are known, the periodic behaviors still need to be
mined from the data because there could be several periodic behaviors with the same
period. As one can see that, in golden eagle’s movement, the same period (i.e., day)
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is associated with two different periodic behaviors, one in the South and another in
the North. In previous work, Mamoulis et al. (2004) studied the frequent periodic
pattern mining problem for a moving object with a given period. However, the rigid
definition of frequent periodic pattern does not encode the statistical information. It
cannot describe the case such as “The eagle has 0.8 probability to be inside the nest
at 6:00 everyday.” One may argue that these frequent periodic patterns can be fur-
ther summarized using probabilistic modeling approach (Yan et al. 2005; Wang and
Parthasarathy 2006). But such models built on frequent periodic patterns do not truly
reflect the real underlying periodic behaviors from the original movement, because
frequent patterns are already a lossy summarization over the original data. Further-
more, if one can directly mine periodic behaviors on the original movement using
polynomial time complexity, it is unnecessary to mine frequent periodic patterns and
then summarize over these patterns.

In this paper, we formulate the periodic behavior mining problem and propose the
assumption that the observed movement is generated from several periodic behaviors
associated with some reference locations. We design a two-stage algorithm, Periodica,
to detect the periods and further find the periodic behaviors.

At the first stage, we focus on detecting all the periods in the movement. Given
the raw data as shown in Fig. 1, we use the kernel method to discover those reference
locations, namely reference spots. The finding of reference spots is motivated by the
idea of home range in biological study (Worton et al. 1989). That is, animals usu-
ally have their own home ranges when they move into a new region and repeat their
activities at similar locations because of the seasonal foraging environment. Then, for
each reference spot, the movement data is transformed from a spatial sequence to a
binary sequence, which facilitates the detection of periods by filtering out the spatial
noise. Besides, based on our assumption, every period will be associated with at least
one reference spot. All periods in the movement can be detected if we try to detect
the periods in every reference spot. At the second stage, we statistically model the
periodic behavior using a generative model. Based on this model, underlying periodic
behaviors are generalized from the movement using a hierarchical clustering method
and the number of periodic behaviors is automatically detected by measuring the
representation error.

Furthermore, we will examine two important extensions of Periodica in the study
of periodic behaviors: (1) missing data interpolation, and (2) future data prediction.
Because periodic behaviors provide us with the regularities in animal movements.
Such regularity could be used to guess missing points in the data and also used to
predict future movement. The raw data obtained from tracking facilities are usually
transmitted with inconstant time gap. As we shown in Fig. 1, the golden eagle’s move-
ment could be recorded every several hours or every several days. But in most of
real applications, people assume the data is sampled at constant rate by first linearly
interpolating raw data. However, linear interpolation could introduce a lot of errors
because the movement may not necessarily follow a linear model. For example, if the
two consecutive recorded points for an eagle are (May 10th, 7:00 am, nest) and (May
15th, 8:00 am, nest). Linear interpolation will guess all the points from May 10th to
May 15th are the nest, which may not be true. But if we already know the daily periodic
behavior, we can better interpolate the missing data, such as guessing that the eagle
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could be at the foraging place at 2:00 pm on May 11th. Similarly, periodic behaviors
could also improve the performance of future movement prediction, especially for a
distant querying time, such as one month after.

In summary, our major contributions are outlined as follows.

– We address an important problem in understanding movement data and formulate
this problem as mining periodic behaviors.

– We propose algorithm Periodica to mine periodic behaviors, where Periodica is
designed in the following two stages.

– We design a location-based method to effectively detect multiple periods in the
movement using the concept of reference spots.

– We statistically model the periodic behavior, by proposing a clustering method,
which determines the number of behaviors and discovers periodic behaviors.

– We examine two extensions of Periodica for further study of periodic behaviors:
missing data interpolation and future data prediction.

– Comprehensive experiments are conducted on both real data and synthetic data,
and the results demonstrate the effectiveness of our method.

The remaining of the paper is organized as follows. We discuss related work in
Sect. 2. Section 3 formally states the problem and outlines the general framework.
Section 4 introduces how to detect periods (stage 1). Section 5 describes the method
to discover the periodic behaviors (stage 2). Two extensions of the method for the study
of periodic behaviors are introduced in Sect. 6. We report our experimental results in
Sect. 7 and conclude our study in Sect. 8.

2 Related work

2.1 Related work in computer science literature

A number of periodic pattern mining techniques have been proposed in data mining
literature. But all the works are based on the assumption that the periods are already
given in advance.

2.1.1 Frequent periodic pattern mining

Han et al. (1998, 1999) propose the algorithms for mining frequent partial periodic
patterns. In their problem setting, each timestamp corresponds to a set of items.
Different from previous works, Han et al’s work (1998, 1999) considers partial peri-
odicity, which is very common in practice since it is more likely that only some of
the time episodes may exhibit periodic patterns. The goal is to find the partial fre-
quent patterns that appear at least min_sup times. They present several algorithms
for efficient mining of partial periodic patterns, by exploring some interesting proper-
ties related to partial periodicity, such as the Apriori property and the max-subpattern
hit set property, and by shared mining of multiple periods.

Yang et al. (2000, 2004, 2002) and Wang et al. (2001) propose a series of works
dealing with variations of periodic pattern mining, such as asynchronous patterns
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(Yang et al. 2000), surprising periodic patterns (Yang et al. 2004), patterns with gap
penalties (Yang et al. 2002), and higher level patterns (Wang et al. 2001). Asynchro-
nous patterns (Yang et al. 2000) are the periodic patterns that may present only within
a subsequence and whose occurrences may be shifted due to disturbance. Yang et al.
(2004) introduces surprising periodic patterns, which is motivated by application in
computational biology. That is, an infrequent pattern is considered very significant
if its actual occurrence frequency exceeds the prior expectation by a large margin.
They introduce a measurement, information, to value the degree of surprise of each
occurrence of a pattern as a continuous and monotonically decreasing function of its
probability of occurrence. Yang et al. (2002) is an extended work of Yang et al. (2004)
which introduces the gap penalties. This work is also motivated from bio-informatics.
They find that it is important to identify subseuqneces that a patterns repeats perfectly
(or near perfectly). As a result, they extend the information gain measure in Yang
et al. (2004) to include a penalty for gaps between pattern occurrences, named as
generalized information gain. Similarly, the problem with gap constraint is studied
in Zhang et al. (2005). To enforce gap constraint, Zhang et al. (2005) requires the
characters in a pattern P should match subsequences S of original sequence in such a
way that the matching characters in S are separated by gaps of more or less the same
size. Wang et al. (2001) studies the patterns that can be hierarchical in nature, where
a higher level pattern may consist of repetitions of lower level patterns.

There are many works on mining spatio-temporal patterns (Wang et al. 2003;
Mamoulis et al. 2004; Cao et al. 2005; Li et al. 2010a). Mamoulis et al. (2004) detects
the periodic patterns for moving objects. However, the work takes period as an input
without discussing how to detect period automatically. Besides, frequent periodic pat-
terns cannot capture the statistical information as the periodic behaviors. Similar to
our definition of periodic behavior, Indyk et al. (2000) studies the problem of discov-
ering the most representative trend that repeats itself every T timestamps. However,
they can only discover one trend for a given period T and such trend covers the whole
time span. More recently, Lahiri and Berger-Wolf (2008) studies periodic behavior
mining in dynamic social networks. Their problem focuses on the graphs that change
dynamically over time. They try to detect the frequent periodic subgraph with a given
period.

2.1.2 Automatic period detection in time series

There are also works addressing the automatic period detection problem (Indyk et al.
2000; Yang et al. 2000; Ma and Hellerstein 2001; Berberidis et al. 2002; Cao et al.
2004; Elfeky et al. 2005a,b). Ma and Hellerstein (2001) and Yang et al. (2000) have
developed a similar linear distance-based algorithm for discovering the potential peri-
ods regarding the symbols of the time series. But this method misses some valid periods
since it only considers the adjacent intervals. In Cao et al. (2004), a data structure,
the abbreviated list table (ALT) is proposed to compute the periods and the pattern.
But such period is based on the threshold of min_sup which is not appropriate in our
problem. Indyk et al. (2000) develops an O(n log2 n) time complexity algorithm using
sketch approaches to find representative trend where n is the length of sequence. But
only one period is detected in the whole sequence. Berberidis et al. (2002) detects the
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period candidates for each symbol using autocorrelation. Improved from Berberidis
et al. (2002) and Elfeky et al. (2005a) proposes a more efficient convolution method
which considers multiple symbols together while detecting the period. However, as
addressed in Sect. 4.2, both autocorrelation and convolution will detect a large set of
period candidates, most of which are redundant. In Elfeky et al. (2005b), a method
based on time warping is proposed, which is robust in the presence of shifting noise
but is less efficient with time complexity O(n3).

2.2 Related work in biological literature

Surprisingly, we do not find any related work in computer science literature that
directly addresses the period detection problem for moving objects. There is one work
(Bar-David et al. 2009) in biological literature that studies the path recursion with
application to African buffalo in South Africa. The path recursions defined in Bar-
David et al. (2009) is similar to our periodic behavior definition. Path recursions are
defined as repeated visits to a particular site or patch. They think such recursion anal-
yses can provide biologists with a basis for inferring aspects of the process governing
the production of buffalo recursion patterns, particularly the potential influence of
resource recovery rate. They give a comprehensive discussion of how recursion anal-
yses can be used when appropriate ecological data are available to elucidate various
factors influencing movement. These factors include various limiting and preferred
resources, parasites, and topographical and landscape factor.

The core technique in Bar-David et al. (2009) to detect periods in the movement
include two parts: (1) recursion analysis, which identifies all closed paths, their length
and locations, based on the observation that along a path that closes on itself, the sum
of vector displacements is zero; and (2) circle analysis, which uses complex Fourier
transform to display the periodogram of clockwise and counterclockwise looping in
the movement patterns. But as we will show in Sect. 4, such method could be sensitive
to noise and they can hardly detect multiple periods existing in only partial movements.

3 Framework overview

Let D = {(x1, y1, t ime1), (x2, y2, time2), . . .} be the original movement database for
a moving object. The raw data is linearly interpolated with constant time gap, such as
hour or day. The constant time gap depends on the sampling rate of the raw data. If the
data is collected about every hour, we could use hour to make the trajectory sequence
evenly gapped. The interpolated sequence is denoted as L OC = loc1loc2 . . . locn ,
where loci is a spatial point represented as a pair (loci .x, loci .y).

Given a location sequence L OC , our problem aims at mining all periodic behav-
iors. Before defining periodic behavior, we first define some concepts. A reference
spot is a dense area that is frequently visited in the movement. The set of all reference
spots is denoted as O = {o1, o2, . . . , od}, where d is the number of reference spots.
A period T is a regular time interval in the (partial) movement. Let ti (1 ≤ i ≤ T )

denote the i-th relative timestamp in T .
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Table 1 A daily periodic behavior of a golden eagle

8:00 9:00 10:00 · · · 17:00 18:00 19:00

Nest 0.9 0.2 0.1 · · · 0.2 0.7 0.8

Foraging place 0.05 0.7 0.95 · · · 0.75 0.2 0.1

Unknown 0.05 0.1 0.05 · · · 0.05 0.1 0.1

A periodic behavior can be represented as a pair 〈T, P〉, where P is a probability
distribution matrix. Each entry Pi,k(1 ≤ i ≤ d, 1 ≤ k ≤ T ) of P is the probability
that the moving object is at the reference spot oi at relative timestamp tk . The formal
statistical modeling of periodic behavior will be given in Sect. 5.1.

Example 1 Suppose T = 24 (h). The golden eagle’s daily periodic behavior (Fig. 1
that involves with 2 reference spots (i.e., “nest” and “foraging place”) could be rep-
resented as (2 + 1) × 24 probability distribution matrix, as shown in Table 1. This
table is an intuitive explanation of formal output of periodic behaviors, which is not
calculated according to specific data in Fig. 1. The probability matrix encodes the
noises and uncertainties in the movement. It statistically characterizes the periodic
behavior, such as “The golden eagle starts going out for foraging around 8:00 in the
morning.”

Definition 1 (Periodic Behavior Mining) Given a length-n movement sequence
L OC , our goal is to mine all the periodic behaviors {〈T, P〉}.

There are two subtasks in the periodic behavior mining problem, detecting the peri-
ods and mining the periodic behaviors. We propose a two-stage algorithm, Periodica,
where the overall procedure of the algorithm is developed in two stages and each stage
targets one subtask.

Algorithm 1 shows the general framework of Periodica. At the first stage, we first
find all the reference spots (Line 2) and for each reference spot, the periods are detected

Algorithm 1 Periodica
INPUT: A movement sequence L OC = loc1loc2 . . . locn .
OUTPUT: A set of periodic behaviors.
ALGORITHM:
1: /* Stage 1: Detect periods (Sect. 4)*/
2: Find reference spots O = {o1, o2, . . . , od };
3: for each oi ∈ O do
4: Detect periods in oi and store the periods in Pi ;
5: Pset ← Pset ∪ Pi ;
6: end for
7: /* Stage 2: Mine periodic behaviors (Sect. 5) */
8: for each T ∈ Pset do
9: OT = {oi |T ∈ Pi };
10: Construct the symbolized sequence S using OT ;
11: Mine periodic behaviors in S.
12: end for
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(Lines 3–5). Then for every period T , we consider the reference spots with period T
and further mine the corresponding periodic behaviors (Lines 7–10).

4 Detecting period

In this section, we discuss how to detect periods in the movement data. This includes
two subproblems, namely, finding reference spots and detecting periods on binary
sequence generated by these spots. First of all, we want to show why the idea of
reference spots is essential for period detection. Consider the following example.

Example 2 We generate a movement dataset simulating an animal’s daily activities.
Every day, this animal has 8 h staying at the den and the rest time going to some random
places hunting for food. Figure 2a shows its trajectories. We first try the method intro-
duced in Bar-David et al. (2009). The method transforms locations (x, y) onto complex
plane and use Fourier transform to detect the periods. However, as shown in Figs. 2b,
c, there is no strong signal corresponding to the correct period because such a method
is sensitive to the spatial noise. If the object does not follow more or less the same
hunting route every day, the period can hardly be detected. However, in real cases,
few objects repeat the exactly same route in the periodic movement.

Our key observation is that, if we view the data from the den, the period is easier to
be detected. In Fig. 2d, we transform the movement into a binary sequence, where 1
represents the animal is at den and 0 when it goes out. It is easy to see the regularity in
this binary sequence. Our idea is to find some important reference locations, namely
reference spots, to view the movement. In this example, the den serves as our reference
spot.

The notion of reference spots has several merits. First, it filters out the spatial noise
and transforms the period detection problem from a 2-dimensional space (i.e., spatial)
to a 1-dimensional space (i.e., binary). As shown in Fig. 2d, we do not care where the
animal goes when it is out of the den. As long as it follows a regular pattern going
out and coming back to the den, there is a period associated with the den. Second,
we can detect multiple periods in the movement. Consider the scenario that there is
a daily period with one reference spot and a weekly period with another reference
spot, it is possible that only period “day” is discovered because the shorter period will
repeat more times. But if we view the movement from two reference spots separately,
both periods can be individually detected. Third, based on the assumption that each
periodic behavior is associated with some reference locations, all the periods can be
found through reference spots.

The rest of this section will discuss in details how to find reference spots and detect
the periods on the binary sequence for each reference spot.

4.1 Finding reference spots

Since an object with periodic movement will repeatedly visit some specific places, if
we only consider the spatial information of the movement, reference spots are those
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Fig. 2 Illustration of the importance to view movement from reference spots. a Raw trajectories. b Fourier
transform on x + yi . c Fourier transform on y + xi . d Binary sequence as viewed from the den

dense regions containing more points than the other regions. Note that the reference
spots are obtained for individual object. While computing the density for each loca-
tion in a continuous space is computationally expensive, we discretize the space into a
regular w× h grid and compute the density for each cell. The grid size is determined
by the desired resolution to view the spatial data.

To estimate the density of each cell, we adapt a popular kernel method (Worton
et al. 1989), which is designed for the purpose of finding home ranges of animals. If
an animal has frequent activities at one place, this place will have higher probability
to be its home. This actually aligns very well with our definition of reference spots.

For each grid cell c, the density is estimated using the bivariate normal density
kernel,

f (c) = 1

nγ 2

n∑

i=1

1

2π
exp

(
−|c − loci |2

2γ 2

)
,
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where |c − loci | is the distance between cell c and location loci . In addition, γ is a
smoothing parameter which is determined by the following heuristic method (Worton
et al. 1989),

γ = 1

2

(
σ 2

x + σ 2
y

) 1
2

n−
1
6 ,

where σx and σy are the standard deviations of the whole sequence L OC in its x and
y-coordinates, respectively. The time complexity for this method is O(whn).

After obtaining the density values, a reference spot can be defined by a contour
line on the map. A contour line joins the cells of equal density. We use contour line
to define the boundary of a reference spot. Any point within the reference spot has
higher density value than that of the boundary. So the reference spot is essentially an
area with high density.

The density value of a contour line can be determined as the top-p% density value
among all the density values of all cells. The larger the value p is, the bigger the size
of reference spot is. In practice, p can be chosen based on prior knowledge about the
size of the reference spots. In many real applications, we can assume that the refer-
ence spots are usually very small on a large map (e.g. within 10% of whole area). So,
by setting p% = 15%, most parts of reference spots should be detected with high
probability. Even though it could introduce a small amount of additional noise at the
same time, our period detection is robust in terms of noise as shown in experiment,
specifically in Fig. 11.

Example 3 (Running Example) We will use a running example throughout the paper
to illustrate our methods. Assume that a bird stays in a nest for half a year and moves to
another nest staying for another half year. At each nest, it has a daily periodic behavior
of going out for food during the daytime and coming back to the nest at night.

As shown in Fig. 3, the two small areas (spot #2 and spot #3) are the two nests and
the bigger region is the food resource (spot #1). Figure 3a shows the density calculated
using the kernel method. The grid size is 100×100. The darker the color is, the higher
the density is. Figure 3b is the reference spots identified by contour using top-15%
density value threshold.

4.2 Periods detection on binary sequence

Given a set of reference spots, we further propose a method to obtain the potential
periods within each spot separately. Viewed from a single reference spot, the move-
ment sequence now can be transformed into a binary sequence B = b1b2 . . . bn , where
bi = 1 when this object is within the reference spot at timestamp i and 0 otherwise.
In discrete signal processing area, to detect periods in a sequence, the most popu-
lar methods are Fourier transform and autocorrelation, which essentially complement
each other in the following sense, as discussed in Vlachos et al. (2005). On one hand,
Fourier transform often suffers from the low resolution problem in the low frequency
region, hence provides poor estimation of large periods. Also, the well-known spectral
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(b)(a)

Fig. 3 Finding reference spots. a Density map calculated by kernel method. b Reference spots defined by
contours

leakage problem of Fourier transform tends to generate a lot of false positives in the pe-
riodogram. On the other hand, autocorrelation offers accurate estimation for both short
and large periods, but is more difficult to set the significance threshold for important
periods. Consequently, Vlachos et al. (2005) proposed to combine Fourier transform
and autocorrelation to find periods. Here, we adapt this approach to find periods in the
binary sequence B. Due to the space limit, we will briefly introduce the method. In
order to get a more thorough understanding of the approach, we recommend readers
to read (Vlachos et al. 2005).

In Discrete Fourier Transform (DFT), the sequence B = b1b2 . . . bn is transformed
into the sequence of n complex numbers X1, X2, . . . , Xn . Given coefficients X , the
periodogram is defined as the squared length of each Fourier coefficient: Fk = ‖Xk‖2.
Here, Fk is the power of frequency k. In order to specify which frequencies are impor-
tant, we need to set a threshold and identify those higher frequencies than this threshold.

The threshold is determined using the following method. Let B ′ be a randomly
permutated sequence from B. Since B ′ should not exhibit any periodicities, even the
maximum power does not indicate the period in the sequence. Therefore, we record
its maximum power as pmax , and only the frequencies in B that have higher power
than pmax may correspond to real periods. To provide a 99% confidence level on what
frequencies are important, we repeat the above random permutation experiment 100
times and record the maximum power of each permutated sequence. The 99-th largest
value of these 100 experiments will serve as a good estimator of the power threshold.

Given that Fk is larger than the power threshold, we still need to determine the exact
period in the time domain, because a single value k in frequency domain corresponds
to a range of periods [ nk , n

k−1 ) in time domain. In order to do this, we use circular
autocorrelation, which examines how similar a sequence is to its previous values for
different τ lags: R(τ ) =∑n

i=1 bτ bi+τ .
Thus, for each period range [l, r) given by the periodogram, we test whether there is

a peak in {R(l), R(l+1), . . . , R(r−1)} by fitting the data with a quadratic function. If
the resulting function is concave in the period range, which indicates the existence of
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Fig. 4 Finding periods.
a Periodogram. b Circular
autocorrelation

(a)

(b)

a peak, we return t∗ = arg maxl≤t<r R(t) as a detected period. Similarly, we employ
a 99% confidence level to eliminate false positives caused by noise.

Example 4 (Running Example (cont.)) The periodogram of reference spot #2 is shown
in Fig. 4a. The red dashed line denotes the threshold of 99% confidence. There are
two points P1 and P2 that are above the threshold. In Fig. 4b, P1 and P2 are mapped
to a range of periods. We can see that there is only one peak, P1, corresponding to
T = 24 on the autocorrelation curve. This suggests the existence of a period of 1 day
in the movement data.

Discrete Fourier Transform can be executed in O(n log n) time using Fast Fourier
Transform algorithm (FFT). And since autocorrelation is a formal convolution which
can also be solved by FFT, its complexity is also O(n log n). So, the overall time
complexity of detecting periods in sequence B is O(n log n).

5 Mining periodic behaviors

After obtaining the periods for each reference spot, now we study the task how to
mine periodic behaviors. We will consider the reference spots with the same period
together in order to obtain more concise and informative periodic behaviors. But,
since a behavior may only exist in a partial movement, there could be several periodic
behaviors with the same period. For example, there are two daily behaviors in a per-
son’s movement. One corresponds to the school days and the other one occurs during
the summer. However, given a long history of movement and a period as a “day”, we
actually do not know how many periodic behaviors exist in this movement and which
days belong to which periodic behavior. This motivates us to use a clustering method.
Because the “days” that belong to the same periodic behavior should have the similar
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temporal location pattern. We propose a generative model to measure the distance
between two “days”. Armed with such distance measure, we can further group the
“days” into several clusters and each cluster represents one periodic behavior. As in
the above example, “school days” should be grouped into one cluster and “summer
days” should be grouped into another one.

In this section, we will formally present the technique to mine periodic behaviors.
Since every period in the movement will be considered separately, the rest of this
section will focus on one specific period T .

5.1 Modeling periodic behaviors

First, we retrieve all the reference spots with period T . By combining the reference
spots with the same period together, we will get a more informative periodic behaviors
associated with different reference spots. For example, we can summarize a student’s
daily behavior as “9:00–18:00 at office and 20:00–8:00 in the dorm”. We do not
consider combining two different periods in current work.

Let OT = {o1, o2, . . . , od} denote reference spots with period T . For simplic-
ity, we denote o0 as any other locations outside the reference spots o1, o2, . . . , od .
Given L OC = loc1loc2 . . . locn , we generate the corresponding symbolized move-
ment sequence S = s1s2 . . . sn , where si = j if loci is within o j . S is further segmented
into m = � n

T � segments2. We use I j to denote the j-th segment and tk (1 ≤ k ≤ T ) to

denote the k-th relative timestamp in a period. I j
k = i means that the object is within oi

at tk in the j-th segment. For example, for T = 24 (h), a segment represents a “day”,
t9 denotes 9:00 in a day, and I 5

9 = 2 means that the object is within o2 at 9:00 in the
5-th day. Naturally, we may use the categorical distribution to model the probability
of such events.

Definition 2 (Categorical Distribution Matrix) Let T = {t1, t2, . . . , tT } be a set
of relative timestamps, xk be the categorical random variable indicating the selec-
tion of reference spot at timestamp tk . P = [p1, . . . , pT ] is a categorical distribution
matrix with each column pk = [p(xk = 0), p(xk = 1), . . . , p(xk = d)]T being an
independent categorical distribution vector satisfying

∑d
i=0 p(xk = i) = 1.

Now, suppose I 1, I 2, . . ., I l follow the same periodic behavior. The probability
that the segment set I =⋃l

j=1 I j is generated by some distribution matrix P is

P(I|P) =
∏

I j∈I

T∏

k=1

p(xk = I j
k ).

According to maximum likelihood estimation (MLE), the best generative model
can be defined as the optimal solution to the following log likelihood maximization
problem:

2 If n is not a multiple of T , then the last (n mod T ) positions are truncated.
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max
P

⎧
⎨

⎩L(P|I) = log P(I|P) =
∑

I j∈I

T∑

k=1

p(xk = I j
k )

⎫
⎬

⎭ . (1)

The well-known solution to (1) is

p(xk = i) =
∑

I j∈I 1
I j
k =i

|I| , (2)

where 1A is the indicator function associated with the event A. That is, p(xk = i) is
the relative frequency of reference spot oi at tk over all segments in I.

Now, we formally define the concept of periodic behavior.

Definition 3 (Periodic Behavior) Let I be a set of segments. A periodic behavior
over all the segments in I, denoted as H(I), is a pair 〈T, P〉. T is the period and P is
a probability distribution matrix learned through Eq. (2). We further let |I| denote the
number of segments covered by this periodic behavior.

5.2 Discovery of periodic behaviors

With the definition of periodic behaviors, we are able to estimate periodic behaviors
over a set of segments. Now given a set of segments {I 1, I 2, . . . , I m}, we need to
discover which segments are generated by the same periodic behavior. Suppose there
are K underlying periodic behaviors, each of which exists in a partial movement,
the segments should be partitioned into K groups so that each group represents one
periodic behavior.

A potential solution to this problem is to apply some clustering methods. In order to
do this, a distance measure between two periodic behaviors needs to be defined. Since
a behavior is represented as a pair 〈T, P〉 and T is fixed, the distance should be deter-
mined by their probability distribution matrices. Further, a small distance between two
periodic behaviors should indicate that the segments contained in each behavior are
likely to be generated from the same periodic behavior.

Several measures between the two probability distribution matrices P and Q can
be used to fulfill these requirements. Here, since we assume the independence of vari-
ables across different timestamps, we propose to use the well-known Kullback-Leibler
divergence as our distance measure:

K L(P‖Q) =
T∑

k=1

d∑

i=0

p(xk = i) log
p(xk = i)

q(xk = i)
.

when K L(P‖Q) is small, it means that the two distribution matrices P and Q are
similar, and vice versa.

Note that K L(P‖Q) becomes infinite when p(xk = i) or q(xk = i) has zero prob-
ability. To avoid this situation, we add to p(xk = i) (and q(xk = i)) a background
variable u which is uniformly distributed among all reference spots,
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p(xk = i) = (1− λ)p(xk = i)+ λu, (3)

where λ is a small smoothing parameter 0 < λ < 1. We usually set λ = 0.01.
To further understand from a statistical point of view why this is a good choice of

distance measure for our problem, let us return to our generative model. Recall that I
is the set of segments generated by P, then K L(P‖Q) can be decomposed as

K L(P‖Q) =
T∑

k=1

d∑

i=0

p(xk = i) log p(xk = i)

−
T∑

k=1

d∑

i=0

p(xk = i) log q(xk = i)

= −H(P)−
T∑

k=1

d∑

i=0

∑
I j∈I 1

I j
k =i

|I| log q(xk = i)

= −H(P)− 1

|I|
∑

I j∈I

T∑

k=1

log q(xk = I j
k )

= −H(P)− 1

|I| log P(I|Q),

where H(P) is the entropy of P and can be regarded as a constant in our problem.
Thus, the KL-divergence measures how likely the segment set I can be generated by
the distribution matrix Q. In our clustering algorithm, among all possible choices of
Q, we simply select the one that maximizes the likelihood P(I|Q).

Now, suppose we have two periodic behaviors, H1 = 〈T, P〉 and H2 = 〈T, Q〉. We
define the distance between these two behaviors as

dist (H1, H2) = K L(P‖Q).

Suppose there exist K underlying periodic behaviors, there are many ways to group
the segments into K clusters with the distance measure defined. However, the num-
ber of underlying periodic behaviors (i.e., K ) is usually unknown. So we propose a
hierarchical agglomerative clustering method to group the segments while at the same
time determine the optimal number of periodic behaviors. At each iteration of the
hierarchical clustering, two clusters with the minimum distance are merged. We use
a representation error to monitor the cluster quality. When the number of clusters
turns from k to k − 1, if the representation error increases dramatically, this indicates
that k could be the correct number of periodic behaviors. We will first describe the
clustering method as Algorithm 2 assuming K is given. The method to select optimal
K is introduced in Sect. 5.3.

Algorithm 2 illustrates the hierarchical clustering method. It starts with m clusters
(Line 1). A cluster C is defined as a collection of segments. At each iteration, two
clusters with the minimum distance are merged (Line 4–8). When two clusters are
merged, the new cluster inherits the segments that owned by the original clusters Cs

123



Mining periodic behaviors

Algorithm 2 Mining periodic behaviors
INPUT: symbolized sequence S, period T , number of clusters K .
OUTPUT: K periodic behaviors.
ALGORITHM:
1: segment S into m segments;
2: initialize k = m clusters, each of which has one segment;
3: compute the pairwise distances among C1, . . . , Ck , di j = dist (H(Ci ), H(C j ));
4: while (k > K ) do
5: select dst such that s, t = arg mini, j di j ;
6: merge clusters Cs and Ct to a new cluster C ;
7: calculate the distances between C and the remaining clusters;
8: k = k − 1;
9: end while
10: return {H(Ci ), 1 ≤ i ≤ K }.

and Ct . It has a newly built behavior H(C) = 〈T, P〉 over the merged segments, where
P is computed by the following updating rule:

P = |Cs |
|Cs | + |Ct |Ps + |Ct |

|Cs | + |Ct |Pt . (4)

Finally, K periodic behaviors are returned (Line 9).
It takes O(T d) to compute the distance between two behaviors, where d is the

number of reference spots. The number of iterations is O(m). At each iteration, it
takes O(m log m) to find the minimum pair and O(mT d) to compute the distances
between the newly merged cluster with other clusters. In summary, the complexity of
the clustering algorithm is O(m(mT d + m log m)) = O(m2T d + m2 log m).

Example 5 (Running Example (cont.)) There are two periodic behaviors with period
T = 24 (h) in the bird’s movement. Figure 5 shows the probability distribution matrix
for each discovered periodic behavior. A close look at Fig. 5a shows that at time 0:00–
8:00 and 22:00–24:00, the bird has a high probability being at reference spot #2, which
is a nest shown in Fig. 3b. At time 12:00–18:00, it is very likely to be at reference spot
#1, which is the food resources shown in Fig. 3b. And at the time 9:00–11:00, there
are also some probability that the bird is at reference spot #1 or reference spot #2. This
indicates the bird goes out of the nest around 8:00 and arrives at the food resources
place around 12:00. Such periodic behaviors well represent the bird’s movement and
truly reveal the mechanism we employed to generate this synthetic data.

5.3 Number of periodic behaviors

In the clustering algorithm, K represents the number of periodic behaviors in the
movement sequence. Since it is unknown how many periodic behaviors are in the
movement, it is important to find the right way to pick the appropriate parameter K .

Ideally, during the hierarchical agglomerative clustering, the segments generated
from the same behavior should be merged first because they have smaller KL-diver-
gence distance. Thus, we judge a cluster is good if all the segments in the cluster are
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(a)

(b)

Fig. 5 Periodic behaviors. a P of periodic behavior #1. b P of periodic behavior #2

concentrated in one single reference spot at a particular timestamp. Hence, a natural
representation error measure to evaluate the representation quality of a cluster is as
follows. Note that here we exclude the reference spot o0 which essentially means the
location is unknown.

Definition 4 (Representation Error) Given a set of segments C = {I 1, I 2, . . . , I l}
and its periodic behavior H(C) = 〈T, P〉, the representation error is,

E(C) =
∑

I j∈C
∑T

i=1 1
I j
i =0

(1− p(xi = I j
i ))

∑
I j∈C

∑T
i=1 1

I j
i =0

.

At each iteration, all the segments are partitioned into k clusters {C1, C2, . . . , Ck}.
The overall representation error at current iteration is calculated as the mean over all
clusters,

Ek = 1

k

k∑

i=1

E(Ci ).

During the clustering process, we monitor the change of Ek . If Ek exhibits a dramatical
increases comparing with Ek−1, it is a sign the newly merged cluster may contain two
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Fig. 6 Representation error

different behaviors and k − 1 is likely to be a good choice of K . The degree of such
change can be observed from the derivative of E over k, ∂E

∂k . Since a sudden increase of

E will result in a peak in its derivative, we can find the optimal K as K = arg maxk
∂E
∂k .

Example 6 (Running Example (cont.)) As we can see Fig. 6, the representation error
suddenly increases at k = 2. This indicates that there are actually two periodic behav-
iors in the movement. This is true because the bird has one daily periodic behavior at
the first nest and later has another one at the second nest.

6 Extensions

In this section, we extend our work in two directions by using periodic behaviors
mined from the movement. One is missing data interpolation, that is to use periodic
behaviors to estimate previous missing points in the movement. Another is prediction
for future movement. If we assume future movement also complies with some periodic
behavior, we could get a better prediction of its future movement. We will discuss in
more details of the data interpolation and we will also conduct experiment on this in
Sect. 7.4. Prediction is a more complicated topic with stronger assumption on future
movement. So we will only briefly introduce the idea how to make of use of periodic
behaviors for better prediction and leave the details of this method as one future work.

6.1 Missing data interpolation

The movement data obtained from most tracking devices are not recorded at the con-
stant rate. For example, due to battery limit, the time gaps between two consecutive
locations in golden eagles movement could possibly be several days or several min-
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Fig. 7 Incorrect estimation of missing data by linear interpolation

utes. And from our examination of the taxi data, the movement could have really high-
resolution (e.g., a recorded location point in every few seconds). But when people turn
off the tracking device in the car, there could be hours or even days of missing data
for this vehicle.

However, in most problems, people usually assume the given data are recorded at
constant rate (e.g., every minute or every hour). So it is essential to pre-process the
data to make it constantly sampled. A simple and straightforward method is to use
linear interpolation on the missing points. Given two consecutive recorded locations,
(loc1, t1) and (loc2, t2), and an expected recording time t (t1 < t < t2), the missing
point at time t is linearly interpolated as:

loc1 + (loc2 − loc1)× t − t1
t2 − t1

.

Linear interpolation is easy to implement and it is suitable for the case when the
missing time period is considerably short. But when the data is sparse and there are
long time periods that the data is missing, such linear interpolation could introduce
a lot of errors on the estimation of real movement. For example, in Fig. 7, the bird
could have a daily periodic pattern from its nest to the foraging place. Assume the
two recorded timestamps are 2005-05-01 1:00 pm and 2005-05-04 2:00 pm. By lin-
ear interpolation, the estimated location at 2005-05-03 1:30 am should be right in the
middle of two recorded locations. However, if we already know the periodic behavior
of this bird, we could infer that this bird should stay at nest at night. Taking Fig. 7 as
an example, if we already know the bird has a daily periodic behavior and every day
in May, 2005 belong to the same periodic behavior. Now, if we want to estimate the
location at 2005-05-03 1:30 am, we can use the locations at 1:30 am in other days to
guess its location. If we find out that most of the locations at 1:30 am for other days
are inside the nest, we can guess that it was also at nest on 2005-05-03 1:30 am. Such
interpolation using periodic behavior could be more accurate than linear interpolation.

We now introduce the method of interpolation missing data using periodic behav-
iors. As mentioned in Sect. 3, the raw data is first linearly interpolated with constant
time gap and the interpolated sequence is L OC = loc1loc2 . . . locn . Let locx (1 ≤
x ≤ n) be an estimated location and now we want to estimate its actual location using
periodic behaviors. Suppose locx belong to periodic behavior H =< T, P >. Note
that here we only consider that case that locx belongs to only one single periodic
behavior. In the process of summarizing periodic behaviors, we know that there are
a set of segments belong to this periodic behavior H. These segments should exhibit
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similar periodic behavior. We use C = {I 1, I 2, . . . , I l} to denote these set of seg-
ments. Assume that locx is a missing point in segment I y . The estimated locx can be
computed as:

locx =
∑

i∈[1,l],i =y I i
x mod T

l − 1
.

We want to give a short discussion on the pros and cons of two interpolation meth-
ods. Each interpolation method has its own merits when facing difference cases. Linear
interpolation is simple and more general, especially for movements that do not have
periodic behaviors. Even in our pre-processing step, we use linear interpolation to get
a rough estimation of the movement. Linear interpolation is more suitable when the
data is not sparse (e.g., the gap between two consecutive timestamps is in a hour) or
the moving object is in the moving mode (because most of the moving objects would
choose the shortest path to get to the destination). And interpolation using periodic
behavior is more suitable when there is a long time duration of missing data (e.g., a
few days). It is especially useful when the moving object has a major change in its
locations in this long missing time period. For example, if two month data are miss-
ing in the movement and the bird moved from South to North at that time, the linear
interpolation will assume the bird was always on the way from South to North in these
two months. However, the migration may only take several days.

6.2 Prediction for future movement

Given historical movement data, it is useful to forecast future movement. In biologi-
cal study, such movement prediction could help us protect endangered species. More
interestingly, if the animals deviate from the expected route a lot, it could be a sign
of ecological change. There have been many related works proposed to solve the pre-
diction problem. Most existing techniques target at near future movement prediction,
such as next minute or next hour. Linear motion functions (Saltenis et al. 2000; Tao
and Papadias 2003; Tao et al. 2003; Jensen et al. 2004; Patel et al. 2004) have been
extensively studied for movement prediction. More complicated models are studied
in Tao et al. (2004). As pointed out by Jeung et al. (2008), the actual movement of a
moving object may not necessarily comply with some mathematical models. It could
be more complicated than what the mathematical formulas can represent. Moreover,
such models built based on recent movement are not useful for predicting distant future
movement, such as next day or one month after.

Periodic behaviors can help better predict future movement, especially for a dis-
tant query time. In Jeung et al. (2008), it proposes prediction method using periodic
patterns. It assumes that the period T and periodic patterns are already given. It builds
an indexing structure, Trajectory Pattern Tree, which indexes the periodic patterns to
answer predictive queries efficiently. Then, it proposes a Hybrid Prediction Algorithm
that provides predictions for both near and distant time queries. For non-distant time
queries, they use the Forward Query Processing which treats recent movements of an
object as an important parameter to predict near future locations. A set of qualified
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candidates will be retrieved and ranked by their premise similarities to the given query.
Then they select top-k patterns and return the centers of their consequences as answers.
For a distant time queries, since recent movements become less important for predic-
tion, the Backward Query Processing is used. Its main idea is to assign lower weights
to premise similarity measure and higher weights to consequences which are closer
to the query time in the ranking process of the pattern selection.

Work (Jeung et al. 2008) can be considered as an extension of using periodic behav-
iors. However, in Jeung et al. (2008), it assumes that there is only one period T . But
in reality, there could be multiple periods interleaving with each other. For example,
the birds could have yearly migration behavior and also daily foraging behavior. If we
only use daily periodic behaviors for prediction, there could be many daily behaviors
in many different places since birds might migrate to places very far away from each
other. In such complicated cases, (Jeung et al. 2008) is likely to fail to predict the
actual locations.

Therefore, it is important to identify which periodic behaviors that the object
belongs to, which is also a challenging task. One possible approach is to iteratively
refine the prediction. For example, when we want to predict a bird’s future location at
10:00 am March 1st next year, we will first identify the periodic with lower time reso-
lution, such as yearly migration behavior. By doing this, we may estimate the region
that this bird could be in March. Then, we look into higher time resolution behaviors,
such as daily behaviors that happened in this region. At 10:00 am, the bird may fly to
foraging places to get the food. Then we can use the locations at 10:00 am in those
daily behaviors to get a better estimation of the actual location. Such approach is only
a tentative idea to solve the prediction in complicated real cases. We consider it as an
interesting future work.

7 Experiment

In this section, we systematically evaluate the techniques presented in the paper.
The language used is C++ and the experiments are performed on a 2.8 GHz Intel
Core 2 Duo system with 4 GB memory. The system ran MAC OS X with version
10.5.5 and gcc 4.0.1.

7.1 Mining periodic behaviors

In this section, we test our periodic behavior mining algorithm, Periodica, on both
real and synthetic data sets.

7.1.1 Mining periodic behaviors on a real bald eagle data

We test our method on a real dataset3. The data contains a 3-year tracking (2006.1–
2008.12) of a bald eagle in the North America. The data is first linearly interpolated
using the sampling rate as a day.

3 The data set is obtained from www.movebank.org.
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(b)(a)

Fig. 8 Real bald eagle data. a Raw data of bald eagle plotted on Google Earth. b Reference spots

Fig. 9 Periodic behaviors of bald eagle

Figure 8a shows the original data of bald eagle using Google Earth. It is an enlarged
area of Northeast in America and Quebec area in Canada. As shown in Fig. 8b, three
reference spots are detected in areas of New York, Great Lakes and Quebec. By apply-
ing period detection to each reference spot, we obtain the periods for each reference
spots, which are 363, 363 and 364 days, respectively. The periods can be roughly
explained as a year. It is a sign of yearly migration in the movement.

Now we check the periodic behaviors mined from the movement. Ideally, we want
to consider three reference spots together because they all show yearly period. How-
ever, we may discover that the periods are not exactly the same for all the reference
spots. This is a very practical issue. In real cases, we can hardly get perfectly the
same period for some reference spots. So, we should relax our constraint and con-
sider the reference spots with similar periods together. If the difference of periods is
within some tolerance threshold, we take the average of these periods and set it as the
common period. Here, we take period T as 363 days, and the probability matrix is
summarized in Fig. 9. Using such probability matrix, we can well explain the yearly
migration behavior as follows.

“This bald eagle stays in New York area (i.e., reference spot # 1) from December
to March. In March, it flies to Great Lakes area (i.e., reference spot #2) and stays there
until the end of May. It flies to Quebec area (i.e., reference spot #3) in the summer and
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stays there until late September. Then it flies back to Great Lake again staying there
from mid October to mid November and goes back to New York in December.”

This real example shows the periodic behaviors mined from the movement provides
an insightful explanation for the movement data.

7.1.2 Mining periodic behaviors on synthetic data

Synthetic data generation. In order to test the effectiveness under various scenarios, we
design a generator for moving objects with periodicity according to a set of parameter
values. These parameters are the length n of the time history (in timestamps), period
T , the probability α for a periodic segment in the object’s movement to comply with
regular movement, the probability β for the noise for each timestamp in a regular peri-
odic segment, and the variance σ of normal distribution to add temporal perturbations
to the periodic segment.

Before generating the movement, we first create several reference spots. Each ref-
erence spot is a small circle with radius ranges from 1% to 5% of the map size.
A standard segment segstd with length T is the movement following the regular peri-
odic pattern. For example, for T = 24 (h), segstd could be designed as 6:00 pm–
8:00 am at reference spot A (such as home) and 8:30 am–5:30 pm h at reference spot B
(such as office). Then, the movement of the object is generated. For every segment seg,
we first determine whether s should be a regular segment or not, given the probability
α.

If seg is a regular segment, the object’s movement is generated as follows. Accord-
ing to standard segment, suppose that from timestamp t0 to t1 the object is at reference
spot A, we further perturb t0 and t1 with some normal distribution (i.e., t ′0 = N (t0, σ 2),
t ′1 = N (t1, σ 2)). For all the experiments, we fix σ = 0.5. Finally, with probability
1 − β, the object is at a random location within the circle of reference spot A from
t ′0 to t ′1. For other timestamps that are not confined to any reference spot, a random
location is generated. If seg is an irregular segment, for each timestamp, a random
location is assigned.

The case with multiple periods. Since the running example has already illustrated
periodic behaviors in partial movement, here we test our algorithm on a case with
multiple periods. Suppose that there are 4 reference spots. Imagine them as “home”,
“office”, “gym”, and “class”. A standard movement segment is generated as 20:00–
8:00 at home every day; 9:00–14:00 at office on weekdays; 15:00–17:00 at gym on
Tuesdays and Thursdays; 15:00–17:00 at class on Mondays, Wednesdays and Fridays.
Furthermore, we choose n = 8400, α = 0.9 and β = 0.1.

The periods detected for each reference spot are shown in Table 2. There are two
periods detected: 24 (i.e., day) and 168 (i.e., week). It is interesting to see that office
has both 24 and 168 as the periods. This is because office is visited “almost” every
day except weekends. So both day and week are reasonable periods.

There is one daily behavior and one weekly behavior. Their probability matri-
ces are illustrated in Fig. 10. In Fig. 10a, we can infer that this person leaves home
around 8:00 am because the probability starts to drop at 8:00 am. In the weekly move-
ment shown in Fig. 10b, 9:00–14:00 weekdays, the person stays in the office with
high probability. Gym is involved with Tuesday and Thursday afternoons and class is
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Table 2 Periods detected

Obs. spot Home Office Gym Class

Periods (h) 24 24, 168 168 168

(a)

(b)

Fig. 10 Periodic behaviors. a Periodic behavior for T = 24. b Periodic behavior for T = 168

involved with Monday, Wednesday and Friday afternoons. The behaviors on weekends
are unknown.

Performance evaluation w.r.t. different parameters in synthetic data generation. We
further verify the effectiveness of our algorithms with respect to the two parameters
we introduced at the beginning of this section, α and β, on synthetic datasets. Recall
that α represents the proportion of regular segments in the whole sequence and β

indicates the level of random noise. Again we use our Running Example to generate
the synthetic data. This time, we vary α from 1 to 0.6, and simultaneously, we choose
β from 0 to 0.5. We test the effectiveness of the period detection algorithm and the
summarization algorithm separately. All experiments are repeated 100 times and the
results are averaged.

For the period detection algorithm, we report the success rates in Figure 11a. Since
we know the ground truth (T = 24), we judge a trial is successful if among all detected
periods, the one with the large correlation value is within the range [23, 25]. The result
suggests that our period detection algorithm is nearly perfect in all cases with α ≤ 0.8.
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(a) (b)

Fig. 11 Performance evaluation. a Success rate of the period detection algorithm. b Representation error
of the summarization algorithm

It is also noticeable that, compared to irregular segments, our algorithm is more robust
to random noise, which may be caused by the failure of tracking devices or trans-
mission networks during the data acquisition process. Furthermore, since irregular
segments often reflects the changes of behaviors in the movement, the sensitivity to
the irregular segments is also desirable for our algorithm which is designed for mining
periodic behaviors.

For the summarization algorithm, we show in Figure 11b the representation error
for K = 10 as defined in Sect. 5.3. To see the significance of the result, observe
that, for example, with α = 0.9 and β = 0.1, if we use 10 clusters to summarize
all the daily segments of one year, the representation error is about 0.2. This means
that we can obtain compact high-quality summarization even with moderate amount
of irregularity and noise. This further shows that our algorithm is indeed able to filter
out redundancy between the segments which are generated by periodic behaviors and
therefore reveals the true behaviors.

7.2 Period detection comparison

Bar-David et al. (2009) applies Fourier Transform on spatio-temporal data to detect
period in the movement. As a simple example shown in Sect. 4, such method is less
resistant to noise in detecting periods. In this section, we will compare the method in
Bar-David et al. (2009) with our Periodica to examine their robustness in terms of
noise.

The synthetic data is generated as follows. Similar to Example 2 in Sect. 4, assume
an animal has daily periodic movement. It has 8 h staying at the den and the rest
time going to some random places hunting. Now we fix its den as the point (0,0) and
foraging area as a r × r circle with center at (10,10). When the animal is out of den
looking for food, it could appear at any random location within the circle. For example,
Fig. 12 shows the synthetic movement with r = 5 and r = 10 individually. When r
gets larger, the noise in the movement increases.
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(a) (b)

Fig. 12 Synthetic data. a Synthetic data with small noise (r = 5). b Synthetic data with large noise
(r = 10)
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Fig. 13 Success rate of Periodica compared with previous method (Bar-David et al. 2009)

Now we test previous method (Bar-David et al. 2009) and our method in terms of
different radius sizes. We vary radius r from 5 to 100. The synthetic data is generated
with a given r . And the method is successful if it can detect the period as 24. For a
fixed radius r , the test is repeated for 100 times and the success rate is the number of
correct period detection among the 100 trials. Figure 13 shows the success rate of two
methods. As we can see that Periodica is very robust in terms of noise. It can always
detect the period correctly. However, previous method (Bar-David et al. 2009) fails
quickly when the radius gets larger. This is because the method simply treats each
location as a complex number. When the foraging area is getting big, the complex
numbers are becoming more random in bigger amplitude and Fourier transform will
be affected by that. But Periodica is not sensitive to that. Once the den is selected as
the reference spot, the locations outside of den will be treated as the same.
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Fig. 14 Periodic behavior of bald eagle with missing data

7.3 Missing data interpolation

In this section, we again use the bald eagle real data to demonstrate the effectiveness
of interpolating missing points using periodic behaviors. The experiment setting is
as follows. From the 3-year bald eagle tracking data, we manually remove part of
them over the time span from May 15th to July 15th in the second year. This period
corresponds to the time when the bald eagle migrate from reference spot 2 to refer-
ence spot 3 in Fig. 8b. This part of the data is then considered as missing and a linear
interpolating is carried out before our period detection method is applied.

Our periodic behavior mining algorithm Periodica again detected the yearly migra-
tion behavior of the bald eagle and the mined periodic behavior is shown in Fig. 14.

Given the mined periodic behavior of the bald eagle, we can use the interpolation
method proposed in Sect. 6 to estimate the missing data. For this particular case, it
simply reduces to assign the average location of the corresponding timestamp in the
first year and the third year to each missing entry in the second year.

The periodic interpolation result is compared with linear interpolation and the
ground truth in Fig. 15. It clearly shows that periodic interpolation result agrees with
the ground truth much better than linear interpolation. Moreover, the mean distance
errors of periodic interpolation and linear interpolation are 22.6 and 43.4 on the map,
respectively. That is, by exploring the periodic behavior of the subject, we reduces the
interpolation error by almost a half.

In conclusion, we have shown that periodic interpolation is more accurate than lin-
ear interpolation for estimating missing data for real world moving objects, particularly
over a long time span.

7.4 Prediction for future movement

In this section, we will examine the future movement prediction using periodic behav-
ior. If a moving object has strong periodicity in its movement, we could use its historical
movement to predict future locations. In this experiment setting, we will also use the
bald eagle data. The data contains 3-year movement from 2006.1 to 2008.12. Assume
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Fig. 15 Comparison of missing data interpolation methods
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Fig. 16 Predicted locations versus true locations in the third year of bald eagle movement

we already know that the period of this eagle is 363 days. Now taking the first 2-year
data as the known movement, we want to predict the movement in the third year.

In Sect. 6.2, we discuss how to predict future movement using periodic behavior. In
this case, we simply use the average location of the corresponding timestamps in the
first year and the second year to predict the location of the third year. Fig. 16 shows
the predicted locations and true locations in the third year. We can see that the overall
trajectory of the third year can be predicted quite well. This is because the bald eagle
has high periodicity in its movements.
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Fig. 17 Prediction error for each day in the third year of bald eagle movement

Figure 17 depicts the distance between predicted location and true location for each
day in the third year. As we discuss in Sect. 7.1.1, the eagle migrates in March, May,
October and December. From Fig. 17, we can see that the prediction error during the
migration time is relatively high, whereas the prediction error is really low when the
eagle was staying at some location. The biggest advantage of using periodic behavior
for prediction is that the prediction is not limited to near future. Previous methods
(Saltenis et al. 2000; Tao and Papadias 2003; Tao et al. 2003; Jensen et al. 2004; Patel
et al. 2004; Tao et al. 2004) using motion models usually predict locations in next few
timestamps. But here we could even predict the movement in the next year as long as
the eagle still follows such periodic behavior.

In conclusion, it is easy to use periodic behavior to predict future movement and
the overall prediction is quite accurate. But we have only studied a simple case with
one single period. When there are multiple interleaved periodic behaviors, it is more
challenging to make accurate predictions.

8 Conclusion and future work

In this paper, we address an important and difficult problem: periodic behavior mining
for moving objects. We propose a two-stage algorithm, Periodica. In the first stage,
periods are detected through reference spots using Fourier transform and autocor-
relation. In the second stage, periodic behaviors are statistically summarized using
hierarchical clustering method. Empirically studies show that our method can deal
with both noisy and complicated cases. A case study on a real data demonstrates the
effectiveness of our method in practice. We further extend our work by discussing
missing data interpolation and future movement prediction using periodic behaviors.
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And the experiment on missing data interpolation shows that using periodic behaviors
could better interpolate missing points.

While our approach fixes some reference spots using spatial information only, it is
interesting to dynamically detect reference spots integrating with temporal informa-
tion. This could give a more precise estimation on the reference locations. Another
important issue is to find periodic behaviors in the data with the very sparse and
inconstant sampling rate. We consider these as promising future works.
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