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Abstract

Using reinforcement learning for traffic signal control has at-
tracted increasing interests recently. Various value-based re-
inforcement learning methods have been proposed to deal
with this classical transportation problem and achieved better
performances compared with traditional transportation meth-
ods. However, current reinforcement learning models rely on
tremendous training data and computational resources, which
may have bad consequences (e.g., traffic jams or accidents) in
the real world. In traffic signal control, some algorithms have
been proposed to empower quick learning from scratch, but
little attention is paid to learning by transferring and reusing
learned experience. In this paper, we propose a novel frame-
work, named as MetaLight, to speed up the learning pro-
cess in new scenarios by leveraging the knowledge learned
from existing scenarios. MetaLight is a value-based meta-
reinforcement learning workflow based on the representative
gradient-based meta-learning algorithm (MAML), which in-
cludes periodically alternate individual-level adaptation and
global-level adaptation. Moreover, MetaLight improves the-
state-of-the-art reinforcement learning model FRAP in traffic
signal control by optimizing its model structure and updating
paradigm. The experiments on four real-world datasets show
that our proposed MetaLight not only adapts more quickly
and stably in new traffic scenarios, but also achieves better
performance.

1 Introduction
Inefficient traffic signal plans waste people’s time on roads.
Current traffic signal control systems are not optimized ac-
cording to the dynamic traffic data. For example, widely-
adapted traffic control systems, such as SCATS (Lowrie
1992), rely on manually designed traffic signal plans. With
the development of AI technology and the growth of avail-
able traffic data (e.g., surveillance camera data), recent stud-
ies apply deep reinforcement learning (DRL) on traffic sig-
nal control problems (Wei et al. 2018; Zheng et al. 2019a;
Van der Pol and Oliehoek 2016). DRL methods can learn
and adjust traffic signal policies based on the feedback from
the environment and have shown better performance than
traditional transportation methods.
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The training mechanism of DRL follows a trial-and-error
manner and thus the superior performance is conditioned on
a large number of training episodes. The cost of computa-
tional resources and learning time is unacceptable in real-
world traffic signal control. For example, if the traffic condi-
tion is complicated, traditional DRL models need long time
to generate enough samples and to have models well-trained.
Even worse, some successive bad trials may result in severe
traffic congestion, which may break down the transportation
system. Thus, the agent for traffic signal control should be
able to learn quickly with a few samples.

Recently, meta-reinforcement learning has been widely
studied to improve the efficiency of deep reinforcement
learning by transferring previous learned knowledge and in-
tegrating this knowledge with the new information. There
are mainly two lines of meta-reinforcement learning al-
gorithms: (1) recurrent-based meta-reinforcement learn-
ing (Duan et al. 2016; Mishra et al. 2018). In this case,
the parameters of the prediction model are controlled by
a learnable recurrent meta-optimizer and its corresponding
hidden state. (2) Gradient-based meta-reinforcement learn-
ing (Finn, Abbeel, and Levine 2017; Nagabandi, Finn, and
Levine 2019; Nagabandi et al. 2019). These methods learn
a well-generalized initialization that can be quickly adapted
to a new scenario with a few gradient steps. However, sim-
ply applying either gradient-based or recurrent-based meta-
reinforcement learning methods on traffic signal control
faces two key challenges:

• How to learn and adapt to the complicated and het-
erogeneous scenarios in traffic signal control? Com-
pared with previous meta-reinforcement learning applica-
tions that mainly focus on homogeneous tasks, the sce-
narios of traffic signal control are more complicated and
heterogeneous. For example, the number of signal phases
in different intersections varies from two to eight and one
intersection may contain different numbers of lanes and
roads. Since the DRL models in different scenarios are
different, a sufficiently flexible meta-reinforcement learn-
ing model is required to handle various scenarios.

• How to apply meta-learning on value-based reinforce-
ment learning? The action space for the traffic sig-
nal agent is discrete and small. For example, according



to (Wei et al. 2019c), the number of signal phases is usu-
ally no more than eight. With the small action space,
value-based DRL is more suitable and it is more fre-
quently used in current DRL-based traffic signal con-
trol (Wei et al. 2018), which trains the model in an
off-policy fashion. However, current meta-reinforcement
learning mainly focuses on policy-based DRL, where the
on-policy data is used.
To address these challenges, we propose a novel meta-

reinforcement learning framework for traffic signal control,
MetaLight, which is built upon the gradient-based meta-
reinforcement learning line. To the best of our knowledge,
it is the first work to introduce meta-reinforcement learning
paradigm into DRL-based traffic signal control. In MetaL-
ight, we first improve a structure-agnostic DQN-based traf-
fic signal control model called FRAP (Zheng et al. 2019a),
which enables heterogeneous scenarios sharing the same pa-
rameters. Then, based on the meta-reinforcement learning
paradigm, we learn a well-generalized initialization from
various traffic signal control tasks. Given a new traffic sce-
nario with a limited learning period, the learned initialization
can be quickly adapted with a few generated samples. To
address the second challenge, we further propose two types
of adaptation mechanisms: individual-level adaptation and
global-level adaptation. The former is a step-by-step opti-
mization process on each task and the latter is a periodic
synchronous updating process on a batch of sampled tasks.
Each task inherits a globally-shared initialization of param-
eters, then performs individual-level adaptation and finally
contributes to global-level adaptation.

We conduct extensive experiments to evaluate MetaLight
on four real-world datasets. The results show that our pro-
posed MetaLight enhances the learning efficiency and out-
performs state-of-the-art baselines in traffic signal control.
In summary, this paper has the following key contributions:
• To improve the efficiency of traffic signal control, we are

the first to apply value-based meta-reinforcement learning
for traffic signal control.

• We propose MetaLight, a novel value-based meta-
reinforcement learning framework by combining
individual-level adaptation and global-level adaptation.

• Empirically, we demonstrate the effectiveness and effi-
ciency of our proposed model on four real-world datasets.

2 Related Work
Meta-reinforcement learning. Meta reinforcement learn-
ing aims to solve a new reinforcement learning task by lever-
aging the experience learned from a set of similar tasks.
Currently, meta-reinforcement learning can be categorized
into two different groups. The first group approaches (Duan
et al. 2016; Wang et al. 2016; Mishra et al. 2018) use an
external memory to store previous learned knowledge and
further reuse these knowledge in a future task. For exam-
ple, (Wang et al. 2016) trains a recurrent neural network by
using the training data as input and then output the param-
eters of a leaner model. These approaches can achieve rela-
tively good performances, but they may lack computational
efficiency (Finn and Levine 2017).

In contrast, the second type of approaches (Li and Ma-
lik 2016; Finn, Abbeel, and Levine 2017; Nagabandi et al.
2019; Andrychowicz et al. 2016; Yao et al. 2019) aim to
learn an optimal parameter initialization or optimizer. Rep-
resentatively, model-agnostic meta-learning (MAML) (Finn,
Abbeel, and Levine 2017) optimizes the initial parameters of
the base learner in meta-training process, which significantly
improves the efficiency of reinforcement learning on the new
task. However, most gradient-based reinforcement learning
algorithms are mainly focusing on policy-based reinforce-
ment learning. How to combine MAML with value-based
reinforcement learning is rarely studied.
Reinforcement learning for Traffic signal control. RL-
based traffic signal control has attracted widely attention
from both academia and industry in the last two decades.
Traditional RL methods (Balaji, German, and Srinivasan
2010; Abdulhai, Pringle, and Karakoulas 2003) are lim-
ited to tabular Q-learning and a discrete state representation.
However, with the development of RL methods, researchers
have studied different RL methods in traffic signal control.
In terms of algorithms, current studies can be categorized
into value based methods (e.g., deep Q-Network (Van der
Pol and Oliehoek 2016; Wei et al. 2019a; 2019b; Zheng et
al. 2019b)) and policy-based methods (Aslani, Mesgari, and
Wiering 2017; Xiong et al. 2019).

In addition to the different method category, researchers
have also been exploring different design of the network
and features. Early studies (Abdoos, Mozayani, and Baz-
zan 2011) use numerical features to describe traffic scenario,
e.g., queue length of each lane. These features are fed into
a multi-layer perceptron to predict the action (e.g., signal
to set). Recently, researchers (Gao et al. 2017; Van der Pol
and Oliehoek 2016) convert traffic situation features (e.g.,
positions of vehicles) into image, and apply convolutional
neural networks (CNN) learn their representations. For in-
stance, (Gao et al. 2017) successfully achieves nearly 50%
improvements compared with transportation methods. Re-
cently, (Wei et al. 2018) proposes a dual-branch network
structure to effectively approximate value function. After
that, (Zheng et al. 2019b) proposes a plain fully-connected
neural net with concise state features and properly designed
reward function, which outperforms all the state-of-the-art
baseline methods.

However, one common problem of the aforementioned
methods is the lack of a universal network design for dif-
ferent intersection scenarios, which means that we need to
train different networks for different scenarios from scratch.
(Zheng et al. 2019a) recently proposed a novel network de-
sign, called FRAP, based on the principle of phase compe-
tition, making it possible to apply universally to different
intersections with the same set of network parameters.

In this paper, we make further modification based on
FRAP to make it apply to more universal scenarios, includ-
ing different lane and intersection settings. Additionally, we
combine the improved FRAP ++ and the extended MAML
paradigm in MetaLight to transfer the knowledge trained
from different scenarios and enable quick adaptation to new
scenarios.



3 Problem Statement
In this section, we first define several basic concepts and then
formally define the meta-reinforcement learning problem for
traffic signal control.

3.1 Preliminary
In this paper, we investigate traffic signal control in a single
intersection with different scenarios. In most cases, the sce-
nario of an intersection is determined by three concepts: traf-
fic flow, entering approach or lane, and phase setting, which
are explained as follows:
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Figure 1: Intersection structure and traffic signal phase.
(a) shows a standard intersection with four entering ap-
proaches (E/N/W/S), each of which has three types of
lanes (right/through/left). (b) enumerates eight typical sig-
nal phases.

• Traffic flow: Both the pattern and volume of traffic flow
are significantly different between intersections. In tradi-
tional DRL model for traffic light control, traffic flow is
used as features, which does not change the state/action
space (Wei et al. 2019c). Therefore, intersections only dif-
fering in traffic flows are regarded as homogeneous sce-
narios in this paper.

• Entering approach/lane: For each intersection, the en-
tering approach is represented as the direction which
vehicles enter in. In real world, most intersections are
equipped with four entering approaches but some have
three or even five. Figure 1 illustrates a standard 4-
approach intersection. Each entering approach has three
types of lanes, e.g., left-lane, through-lane and right-lane.
According to (Wei et al. 2019c), many features in the state
for RL methods are measured in unit of lanes, such as
queue length per lane, the number of entering approaches
and lanes determine the dimension of state space. Thus,
intersections with different number of entering intersec-
tions and lanes are regarded as heterogeneous scenarios.

• Phase Setting: As illustrated in Figure 1, there are theo-
retically eight signal phase in total and each phase con-
trols two traffic movements which do not conflict with
each other. Each intersection has its own phase settings
based on the traffic characteristics. Since the dimension
of action space for RL agent is directly correlated with

the number of phases (Wei et al. 2019c), we also define in-
tersections with different phase settings as heterogeneous
scenarios.

3.2 Problem: Meta-reinforcement Learning for
Traffic Signal Control

Following the traditional task definition of meta-
reinforcement learning (Finn, Abbeel, and Levine 2017), in
traffic signal control, we are given a set of Nt intersections
IS = {I1, . . . , INt} sampled over task distribution E .
The control process in each intersection Ii is represented
as a Markov decision process 〈Si,Ai,Ri, γi, Hi〉, which
contains a finite set of states Si, a finite set of actions
Ai, a reward function Ri, a discounted factor γi, and the
episode length Hi. The reward Ri(s, a) in step t is defined
as Ri(s, a) = E [Rt+1|Si(t) = s,Ai(t) = a]. For each
intersection Ii, given an episode length Hi, the goal is to
learn an optimal control policy πi(a|s). In addition, for
intersection Ii, the value function is defined as the sum
of reward rt discounted by γi at each timestep t, which is
formulated as

Q(s, a; fθ) = E [ri(t) + γiri(t+ 1) + . . . |si(t) = s, ai(t) = a] .
(1)

Then, we defined the base learner f with learnable parameter
θ to map observations Si to outputsAi. The effectiveness of
function f with optimal parameters θi is defined as

L(fθi) =

Es,a,r,s′∼Di
[(
r + γmax

a′
Q
(
s′, a′; fθ−i

)
−Q (s, a; fθi)

)2]
,

(2)
where θ−i are the parameters of target network in FRAP that
are fixed for every C iterations (Mnih et al. 2015).

In meta-reinforcement learning, we are supposed to
learn a well-generalized meta-learner M(·) to enhance
the learning efficiency of future traffic signal control
tasks. In general, the whole procedure of meta-learning
can be split as two steps: meta-training and meta-testing.
During meta-training, the parameters of base learner f
(i.e., {θ1, . . . , θNt}) and the well-generalized meta-learner
M(·) are updated alternatively. First, the parameters
{θ1, . . . , θNt} are learned by using transitions Di sampled
from each intersection Ii. The goal is to minimize the loss
over all meta-training, which is defined as:

{θ1, . . . , θNt} := min
{θ1,...,θNt}

Nt∑
i=1

L(M(fθi);Di). (3)

Then, the meta-learnerM is optimized by sampling another
batch of transitions D′i:

M := min
M

Nt∑
i=1

L(M(fθi);D
′

i). (4)

After learning a well-generalized meta-learner, during meta-
testing, for a new traffic intersection It, the model f is
adapted by using transitions Dt sampled from it.



Then, we introduce model-agnostic meta-learning
(MAML), one of the representative gradient-based meta-
reinforcement learning algorithms (Finn, Abbeel, and
Levine 2017). In MAML, the meta-learner M is regarded
as well-generalized initialization θ0 of parameters in base
learner f . With a few gradient descent steps, we can
get the optimal parameters θi. Thus, the meta-learner
M is regarded as (one gradient step as exemplary)
M(fθi) = fθ0−α∇θL(fθ,Di). In meta-training process, the
whole loss of MAML is:

Lall = L(fθ0−α∇θL(fθ;Di);D
′

i). (5)

4 The MetaLight Framework
In this section, we first briefly introduce the structure-
agnostic and parameter-sharing RL model called
FRAP (Zheng et al. 2019a) and propose a improved
model FRAP++. Then, we will elaborate the entire parame-
ter learning procedure of our proposed MetaLight, including
individual-level adaptation and global-level adaptation.

4.1 Structure-agnostic and Parameter-sharing
RL Model

Figure 2: The Illustration of FRAP and FRAP++. FRAP uses
the sum of lanes’ representation to represent phase while
FRAP++ uses the mean of them. Yellow multi-layer percep-
trons (MLPs) are shared by each phase.

In traffic signal control, a flexible base model f is required
to handle the scenario across heterogeneous intersections
which are described in Sec. 3.1. Figure 2 illustrates struc-
tures of FRAP and FRAP++ in 3-phase intersections. The
network consists of several embedding layers and convolu-
tional layers. The former parameters are shared across lanes,
which means the number and type of approaching lanes only
affect the network structure rather than the parameters of
embedding layers. Furthermore, FRAP uses fixed number of
1×1 filters in convolutional layers, they are also independent
of the number and type of phase. In summary, the structure
of FRAP depends on the number of lanes and phases in the
intersection but the network parameters are sharing in dif-
ferent intersections.

To improve the flexibility of FRAP on different lanes
combination, we propose a improved model FRAP++,
which enhance FRAP from two folds: (1) The FRAP++ rep-
resents the phase demand by averaging each lane’s demand

instead of adding this demand in order to remove the influ-
ence of difference in the lane number under each phase and
make FRAP widely applicable.. (2) FRAP updates param-
eters only after each whole episode, which violates DQN
one-step updating mechanism. Instead, FRAP++ improves
the updating frequency by undertaking a mini-batch updat-
ing after each step in one episode.

Similar with (Zheng et al. 2019a), the state of FRAP++
consists of the number of vehicles and signal phase on
each approaching lane. The action for RL agent is defined
as choosing the phase for the next time interval. The re-
ward is defined as the average queue length on approach-
ing lanes. Therefore, FRAP++ is a structure-agnostic model
with shared parameters between different scenarios, which
perfectly fits the property of base learner f defined in Sec. 3.

4.2 MetaLight Framework
Next, we introduce our MetaLight framework, which reuse
previous learned knowledge to facilitate the learning pro-
cess in target intersection. MetaLight follows the tradi-
tional gradient-based meta-reinforcement learning frame-
work, MAML, which is described in Sec. 3. However, tra-
ditional design of MAML mainly focuses on policy-based
DRL problems. Empirically, on value-based DRL models
like FRAP++, MAML only slightly outperforms random ini-
tialization, which does not meet our expectation and can-
not be deployed to large-scale real-world scenarios (see ex-
periments in Section 5 for more details). Thus, we improve
MAML by alternatively utilizing individual-level adaptation
and global-level adaptation. Specifically, MetaLight takes
advantage of fast learning in DQN by updating parameters
at each time-step and extracting the common knowledge in
MAML by gradient descent. The framework of MetaLight
is illustrated in Figure 3 and we detail these two adaptation
steps in the follows:

Individual-level Adaptation As described in (Mnih et
al. 2015), DQN uses a neural network to represent the
action-state function, Q(s, a), in Equation (1). In traffic
signal control, FRAP++ follows the standard design of
DQN with experience replay and target value network.
In each intersection Ii, the agent’s experiences ei(t) =
(si(t), ai(t), ri(t), si(t + 1)) at each timestep t are stored
in set Di.

As shown in Figure 3, in individual-level adaptation, the
parameters θi of each task Tis are updated at each timestep
by gradient descent, which is formulated as (one gradient
step as exemplary):

θi ← θi − α∇θL(fθ;Di), (6)

where α represents the step size and the loss function L is
defined in Eqn. (2). In value-based reinforcement learning,
individual-level adaptation is taken at each timestep to speed
up the learning process on source intersections.

Global-level Adaptation After the adaptation in
individual-level, global-level adaptation aims to aggre-
gate the adaptation of each intersection Ii, and then update
the initialization θ0 of meta-learner using a newly sampled
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Figure 3: Meta-training framework of MetaLight. From left to right, a batch of tasks are first sampled. Then, in meta-training,
the whole episode with a length of T is split by tθ. During each interval tθ, the base learner inherits the initialization from
meta-learner and then conduct individual-level adaptation using samples drawn from memory at each time step. At the end of
each interval tθ, the meta-learner takes global-level adaptation with another batch of samples from the memory.

Algorithm 1: Meta-training process of MetaLight
Input: Set of source intersections IS ; stepsizes α, β
frequency of updating meta parameters tθ
Output: Optimized parameters initialization θ0

1 Randomly initialize parameters θ0
2 for round = 1, . . . , N do
3 Sample a batch of intersections from E
4 for t = 1, tθ + 1, 2tθ + 1, . . . , T do
5 for t

′
= t, . . . ,min(t+ tθ, T ) do

6 for each intersection Ii do
7 θi ← θ0
8 Generate transitions into D and

sample transitions as Di
9 Update θi ← θi − α∇θL(fθ;Di) by

Eqn. (6)

10 Sample new transitions from D as D′i
11 Update θ0 ← θ0 − β∇θ

∑
Ii L(fθ;D

′

i) by
Eqn. (7)

transitions D′i. The initialization θ0 is updated as follows:

θ0 ← θ0 − β∇θ
∑
Ii

L(fθ;D
′

i), (7)

where β is defined as stepsize. The whole algorithm for
meta-training process of MetaLight is described in Alg. 1.

Transfer Knowledge to New Intersections In the meta-
training process of MetaLight, we learn a well-generalized
initialization of parameters in f . Then, we apply the initial-
ization θ0 to a new target intersection It. By using θ0 as
initialization, the update process in the intersection It is de-
fined as:

θt ← θt − α∇θL(fθ;Dt). (8)

Then we evaluate the performance by using the optimal pa-
rameters θt. The meta-testing process is outlined in Alg. 2.

Algorithm 2: Meta-testing process of MetaLight
Input: Set of target intersections IT ; stepsizes α
learned initialization θ0
Output: Optimized parameters θt for each

intersection It
1 for each intersection It in IT do
2 θt ← θ0
3 for t = 1, . . . , T do
4 Generate and sample transitions as Dt
5 Update θt ← θt − α∇θL(fθ;Dt) by Eqn. (8)

5 Experiment
5.1 Experiment Settings
We conduct experiments1 in a simulation platform called
CityFlow (Zhang et al. 2019) 2, which provides the latest
simulation environments for traffic signal control. The traffic
data is first fed into the simulator and vehicles move to their
destination according to the setting of the environment. The
simulator executes the traffic signal actions from the control
method and returns the state to the signal control method.

5.2 Datasets
We use four real-world datasets from two cities in China: Ji-
nan (JN) and Hangzhou (HZ), and two cities in the United
States: Atlanta (AT), and Los Angeles (LA). The raw traf-
fic data from two Chinese cities contains the information
about the vehicles coming through the intersections, which
are captured by the nearby surveillance cameras. The other
raw data from American cities is composed of the full vehi-
cle trajectories which are collected by several video cameras
along the streets3. Based on these raw data, we run the traf-
fic flow for one hour and the entering lanes only consist of
left-lane and through-lane.

1Codes are provided at https://traffic-signal-control.github.io/
2https://cityflow-project.github.io
3https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm



Because of the limited kinds of phase setting in the raw
data, we add some new phase settings in order to build
enough heterogeneous scenarios. There are eleven kinds of
phase settings in total, including four kinds of 4-phase, six
kinds of 6-phase, and one 8-phase. They are divided into two
groups named as PS1 and PS2 respectively. As described in
Figure 4, PS1, colored red, contains six kinds of phase set-
tings and PS2 colored blue consists of the other five phase
settings.

Phase 
Setting

A B C D E F G H

4a ✓ ✓ ✓ ✓

4b ✓ ✓ ✓ ✓

4c ✓ ✓ ✓ ✓

4d ✓ ✓ ✓ ✓

6a ✓ ✓ ✓ ✓ ✓ ✓

6b ✓ ✓ ✓ ✓ ✓ ✓

6c ✓ ✓ ✓ ✓ ✓ ✓

6d ✓ ✓ ✓ ✓ ✓ ✓

6e ✓ ✓ ✓ ✓ ✓ ✓

6f ✓ ✓ ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 4: Eleven phase settings in experiments are composed
of different phases from A to H. Red represents PS1 and blue
denotes PS2.

As summarized in Table 1, we construct 24 scenarios in
Hangzhou as training set. The phase setting of each scenario
is drawn from PS1. The testing set is classified into three
types and introduced as follows: Task-1 is a set of homo-
geneous tasks in which testing sets are similar with train-
ing sets except traffic flow. Task-2 represents heterogeneous
tasks which means testing datasets are different from train-
ing datasets in both traffic flow and phase setting. Task-3
consists of both homogeneous and heterogeneous tasks from
different cities (Jinan, Atlanta, and Los Angeles).

Table 1: Summary of datasets

Datasets Training Sets Testing Sets
Task-1 Task-2 Task-3

Scenarios 26 6 5 16

Cities HZ HZ HZ JN/AT/LA

Phase Settings PS1 PS1 PS2 PS1/PS2

5.3 Methods for Comparison
To evaluate the effectiveness and efficiency of our Meta-
Light, we compare it with several representative methods
described as follows. All baselines use FRAP as the base
model.
• Random : Random uses random initialization and train

FRAP++ model from scratch.
• Pretrained : Pretrained means selecting one existing

FRAP++ model’s parameters as the initial parameter for a
new intersection. The similarity of different intersections
determines which model to be chosen. When in homoge-
neous setting, the model trained at the same phase setting

is chosen. In heterogeneous setting, since there are no ex-
isting intersections with the same phase setting, the model
trained at 8-phase setting will be used for initialization.

• MAML (Finn, Abbeel, and Levine 2017): In MAML,
we combine the original framework of MAML reinforce-
ment learning and FRAP. The original FRAP is greatly
matched with MAML framework for policy-based rein-
forcement learning, because it also conducts model up-
dating at the end of a whole episode.

• SOTL (Cools, Gershenson, and Hooghe 2013) Self-
Organizing Traffic Light Control (SOTL) provides ref-
erence value for comparison, which is a classical trans-
portation method. SOTL sets a pre-defined threshold for
the number of waiting vehicles on approaching lanes and
changes signal phases when the threshold is exceeded.

5.4 Model Details and Hyperparameter Settings
In MetaLight, the base model, FRAP++ shares the simi-
lar network structure with FRAP (Zheng et al. 2019a), ex-
cept for the average operation in the embedding layers. The
learning rates of learner and meta-learner are set as 0.001
for MetaLight and MAML in both meta-training and meta-
testing. The episode length for all scenarios is 3600 seconds
and the interval of each interaction between simulator and
RL agent is 10 seconds. For MetaLight, the learner conducts
model updating after each interaction using 30 samples and
only one epoch for training. Meta-learner updates itself at
intervals of ten times of learners’ updating. For MAML , the
learner first undertakes one centralized updating at the end
of each episode with 1000 samples and 100 epochs for train-
ing. Then, the meta-learner updates itself using new episodes
each time.

5.5 Evaluation Metrics
We choose travel time as the evaluation metric, which is
also the most frequently used measure to judge performance
in the transportation field. This metric is defined as the aver-
age travel time that vehicles spend on approaching lanes (in
seconds).

5.6 Task-1: Homogeneous Scenarios
In Task-1, we choose six homogeneous scenarios whose
phase settings all come from PS1 and exist in the training
set. The results of all methods are described in Table 2.
Each phase setting stands for one scenario. Note that, the im-
provement is calculated by comparing with the best baseline.
We can observe that either Pretrained or MAML is the best
baseline but MetaLight outperforms them in most scenarios
except for the 4b phase setting. The averaged improvement
over these phase settings is 5.52%, which is not significant
enough. The possible reason is that the effect of overfitting
problem is not severe in homogeneous setting and simply
utilizing existing models can work well. Even so, MetaL-
ight is much better since it is able to apply only one initial
model to all of these scenarios, while the Pretrained method
need select suitable model each time.



Three meta-testing curves from these scenarios are illus-
trated here in Figure 5. In these cases, MetaLight outper-
forms other baselines and achieves not only faster learn-
ing speed but also the better converged value. Compared
with MetaLight, MAML is not very good and sometimes
becomes close to Random, which indicates the meta model
trained in MAML can make few contributions to the learn-
ing in this problem.

Table 2: Performances of different methods on Task-1.
Travel time is reported. The average improvement is 5.52%

Phase Setting 4a 4b 6a 6c 6e 8

Random 102.71 292.51 90.41 461.78 105.49 73.62
Pretrained 82.87 191.83 85.47 200.06 111.94 67.88
MAML 82.95 191.53 161.41 404.04 132.26 77.07
MetaLight 74.67 199.55 78.92 195.92 98.58 66.93
Improvement 9.89% \ 7.66% 2.07% 6.56% 1.41%
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Figure 5: Meta-testing results for Task-1. Travel time on
each epoch is measured by testing the updated model in the
whole episode. Three kinds of phase settings are selected
from PS1. We exclude parts of curves which are out of range.

5.7 Task-2: Heterogeneous Scenarios

In Task-2, five heterogeneous scenarios in Hangzhou are
selected. The results of these scenarios are shown in Ta-
ble 3. We can see that MetaLight achieves significant im-
provements (22.57% in average). Because these phase set-
tings in Task-2 are unseen in training datasets, the general
knowledge shared by all scenarios could speed up learning
in new scenarios and alleviate the impact of overfitting. Like
Task-1, three learning curves of heterogeneous scenarios are
shown in Figure 6.

We can see that MAML and Random adapt very slowly
and cannot keep a stable learning trend, which means the ini-
tialization that MAML has learned is no better than random
initialization. Because of the high variance rooted in policy-
based RL, the original policy-based updating mechanism of
FRAP and MAML bring too much unstable updating of the
base model. Thus, it is hard to learn a universal initialization
in traffic signal control. In contrast, MetaLight maintains a
more stable and faster adaptation in new heterogeneous sce-
narios. Incorporating individual-level and global-level adap-
tation, MetaLight lets the base model to learn more stably
and efficiently by finding an optimal universal initialization.

Table 3: Overall performances of Task-2. Each result is the
average travel time of all scenarios. The averaged improve-
ment over all phase settings is 22.57%.

Phase Setting 4c 4d 6b 6d 6f

Random 254.70 662.85 298.53 570.55 474.20
Pretrained 95.94 385.74 233.64 430.74 307.98
MAML 101.41 440.65 369.82 614.09 345.46
MetaLight 81.07 352.83 172.91 273.58 226.82
Improvement 15.50% 8.53% 25.99% 36.49% 26.35%
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Figure 6: Meta-testing curves for Task-2. Episode length is
3600s. Three random seeds are used for experiments. The
means and variances of these results are also illustrated.

5.8 Task-3: Homogeneous and Heterogeneous
Scenarios in Different Cities

Furthermore, we try to study the knowledge transfer be-
tween different cities. As described in Section 5.2, the source
data may differ greatly, which increasing the difficulties to
adapt control policy. We conduct homogeneous and hetero-
geneous experiments in Jinan, Atlanta, and Los Angeles.
The results are presented in Table 4. Compared with Ta-
ble 2, MetaLight significantly outperforms other baselines
on homogeneous tasks. Figure 7 further illustrates detailed
description of three learning curves for task-3, from which
we can draw the same conclusion like Figure 5 and 6 that
MetaLight outperforms all baselines and adapts much faster
and more stable. Note that, in Figure 5, 6 and 7, the travel
time may stay the same or rise for a while. This counter-
intuitive phenomenons are mainly due to the randomness in
the training process of RL model.

Table 4: Performances on Task-3. Each result is the average
of three scenarios. Average improvements are 21.09% in ho-
mogeneous tasks and 9.59% in heterogeneous tasks.

City Homogeneous Heterogeneous
JN AT LA JN AT LA

Random 451.88 379.16 262.23 363.59 602.60 684.15
Pretrained 128.20 186.86 104.59 156.04 351.39 331.75
MAML 173.13 301.29 135.11 335.81 618.84 393.58
MetaLight 95.01 161.37 77.23 137.02 310.39 308.71
Improvement 25.89% 13.64% 26.16% 10.17% 11.67% 6.94%

6 Conclusion and Discussion
In this paper, we propose a novel framework MetaLight
to improve the learning efficiency of deep reinforcement
learning in traffic signal control by transferring previous



learned knowledge. We first improve a representative FRAP,
a structure-agnostic traffic signal control model. Based on
the previous gradient-based meta-learning framework, Met-
aLight then incorporates individual-level and global-level
adaptation. The experiments on both homogeneous and het-
erogeneous scenarios demonstrate the effectiveness and ef-
ficiency of MetaLight for traffic signal control.

In the future, we plan to investigate this problem from
the following two perspectives: (1) We plan to apply meta-
reinforcement learning on traffic signal control across multi-
intersections. In cooperation mechanism, the way to transfer
the knowledge learned from existing scenarios need be care-
fully designed. (2) We plan to explain the black-box meta-
reinforcement learning model by analyzing which knowl-
edge is transferred.
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Figure 7: Meta-testing results for task-3. The random base-
line curves are excluded since their results are much worse.
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