
IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 1

Citywide Traffic Volume Inference with
Surveillance Camera Records

Yanwei Yu*, Member, IEEE, Xianfeng Tang*, Huaxiu Yao, Xiuwen Yi, and Zhenhui Li, Member, IEEE

Abstract—Real-time traffic monitoring becomes an essential part of an intelligent city. In recent years, the adoption of surveillance
cameras is rapidly growing because they are helpful to manage and control the traffic. However, it is impossible to install cameras on
every road in a city due to the high costs of deployment and maintenance. Given the information from limited surveillance cameras, can
we infer the citywide traffic volume accurately? This is a challenging question because we have no historical data on the roads without
cameras. It requires us to design a method that goes beyond the inference using nearby traffic data. Moreover, a nice property of
surveillance camera data is that these AI-equipped cameras can recognize individual vehicles. So we can recover incomplete
trajectories for vehicles using plate numbers in surveillance camera records. However, for road segments without cameras, we do not
know whether those vehicles pass through them or not. How can such incomplete trajectories be effectively used to help citywide traffic
inference? In this paper, we propose a framework named CityVolInf to infer citywide traffic volume based on surveillance camera
records. Our framework combines a semi-supervised learning-based similarity module with a novel simulation module to address the
above challenges. While the similarity module focuses on spatiotemporal correlations of traffic volume between road segments, the
simulation module utilizes incomplete trajectories to model transitions of traffic volume between adjacent road segments. Our
framework bridges the conventional data-driven approach and transportation domain knowledge from the simulator. We conduct
extensive experiments on a real-world dataset, containing 405, 370, 631 camera records collected from 1, 704 surveillance cameras
over a period of 31 days in a provincial capital in China. The experimental results demonstrate the effectiveness of CityVolInf
compared with existing methods.

Index Terms—Traffic volume inference, spatiotemporal data, urban computing.

F

1 INTRODUCTION

R EAL-TIME traffic monitoring can benefit a variety of
urban applications such as traffic management, route

planning, and public safety. In recent years, surveillance
cameras are widely deployed to monitor traffic situations.
For example, more than two thousand traffic surveillance
cameras are installed in Beijing, China. These AI-equipped
cameras can recognize individual vehicle information (e.g.,
license plate, speed, driving direction, etc.) and count the
overall traffic volume. They are also used to automatically
detect violations such as speeding. In addition, police can
monitor the traffic conditions of the whole city and quickly
respond to abnormal events (e.g., traffic accidents and con-
gestion).

Despite the growing adoption of traffic surveillance cam-
eras, their coverage in the city is still limited because of the
cost of installment and maintenance. The traffic surveillance
system requires high-resolution cameras, a high-speed inter-
connection network, and video processing techniques. For
example, only about 1, 500 of more than 5, 000 major road
segments in Jinan, China are monitored by surveillance cam-

• Y.W. Yu is with the Department of Computer Science and Technology,
Ocean University of China, Qingdao 266100, China.
E-mail: yuyanwei0530@gmail.com

• X.F. Tang, H.X. Yao and Z.H. Li are with the College of Information
Sciences and Technology, Pennsylvania State University, University Park,
PA 16802.
E-mail: {xianfeng, huaxiuyao, jessieli}@ist.psu.edu

• X.W. Yi is with JD Urban Computing Business Unit, Beijing 100176,
China. E-mail: xiuwenyi@foxmail.com

Manuscript received January 29, 2019; revised June 25, 2019; accepted August
6, 2019.
(*Authors contribute equally to this work. Corresponding author: Yanwei Yu.)

eras. Can we infer the city-wide traffic volume using camera
records collected from a small portion of road segments?

In this paper, we aim to address the problem of traffic
volume inference using the surveillance cameras records.
This problem falls into the category of spatiotemporal miss-
ing data inference. The most naive approach is to estimate
the missing values by linear interpolation [1], [2], [3], [4].
However, those simple approaches fail to optimize the
problem globally and do not well utilize spatiotemporal
characteristics obtained from historical data. Another fre-
quently used method is to infer the missing values with
collaborative filtering approach [5]. The method treats each
location as a user, each timestamp as an item, and the traffic
volume of a location at a time as the values for the user-item
matrix. Traffic volume values for the missing locations can
be estimated using the similar locations (measured by his-
torical similarity). However, in our problem definition, there
is no historical information for unmonitored road segments
at all. Thus collaborative filtering cannot be applied to our
problem because it relies on historical information to define
similar road segments.

Recent spatiotemporal data inference study [6] proposes
to construct an affinity graph, which defines nodes as loca-
tions, edge weights as the similarities between pairs of loca-
tions, and values on nodes as the traffic volume values. The
objective is to minimize the aggregated differences between
the values of two nodes, weighted by the edge weights,
using graph-based semi-supervised approach. However, it
is extremely difficult to incorporate some important road
properties, such as the number of left-turn lanes and speed
limits, when defining similarities in the semi-supervised

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 2

learning framework.
Traffic surveillance cameras enable us to consider the

transitions of traffic volume between road segments. This is
possible because the cameras can recognize vehicle license
plates. We can construct the trajectory for any specific vehi-
cle by concatenating the locations where the vehicle is rec-
ognized in chronological order. Millions of such trajectories
obtained from surveillance camera records can be used to
estimate the transitions. However, such trajectories do not
cover the road segments without cameras. We need to ad-
dress the challenge of estimating the complete routes based
on the incomplete camera based trajectories. Note that, some
existing literature [4], [6], [7], [8] use densely sampled tra-
jectory data (e.g., trajectories tracked by GPS embedded in
vehicles) for traffic volume inference. However, those dense
trajectories are sampled from specific kinds of vehicles (e.g.,
taxi trajectories used in [6]), leading to biases compared with
the actual distribution of trajectories.

In this paper, we propose a novel framework named
CityVolInf for citywide traffic volume inference with
surveillance camera data. CityVolInf leverages the spa-
tiotemporal similarities and transitions of traffic volume
for inference. On the one hand, we introduce a similarity
module that utilizes graph-based semi-supervised learning
method to model spatiotemporal similarities of traffic vol-
ume between road segments. On the other hand, we propose
a simulation module to leverage the incomplete trajectories
recognized by cameras. The simulation module incorporates
a traffic simulator (i.e., SUMO [9]), which can simulate mul-
tiple vehicles’ movements jointly at a citywide scale. When
estimating complete routes using SUMO, many properties
of the road network, such as the effect of multiple left-turn
lanes and speed limits, can be modeled precisely and ef-
fectively through the simulation. Conventional data-driven
approaches are not capable of handling those heterogeneous
properties and factors, given data from limited cameras.
Further learned transitions from those routes benefit the
traffic volume inference.

Combining the similarity module and the simulation
module, our proposed CityVolInf bridges data-driven
methods and transportation domain knowledge. To the
best of our knowledge, this is the first attempt to utilize
incomplete trajectories for citywide traffic volume inference,
and the first attempt to combine simulators with existing
data-driven approaches in this problem.

We use a large-scale real-world dataset collected from
a provincial capital in China during the whole August
2016. The 405, 370, 631 camera records contain more than
11 million unique vehicles, identified by plate numbers.
We conduct comprehensive experiments to demonstrate the
effectiveness of our proposed method.

To summarize, we make the following contributions:
• We propose CityVolInf for citywide traffic volume in-

ference with surveillance camera records data.
• We design a similarity module by constructing an affin-

ity graph to model spatiotemporal similarities of traffic
volume between road segments.

• We propose a novel simulation module that leverages
SUMO and incomplete camera based trajectories for
modeling traffic volume transitions between adjacent
road segments.

• We conduct extensive experiments on a large-scale real-
world traffic surveillance dataset. Experimental results
demonstrate that our proposed framework outperforms
state-of-the-art methods.

The remainder of this article is organized as follows. We
discuss related work which is related to our method in next
section. We define the necessary concepts and formulate
the focal problem of this paper in Section 3. We present
our proposed CityVolInf framework in Section 4. Section 5
reports the experimental observations. Section 6 concludes
the article.

2 RELATED WORK

Many prior studies focus on data-driven approach for mod-
eling city traffic. For example, to predict future traffic flow,
autoregressive integrated moving average (ARIMA) and
its variants have been widely applied [10], [11], [12], [13],
[14]. Further studies start leveraging external context data
such as venue information, weather conditions, and local
events [3], [15], [16], [17], [18]. Recently, deep learning based
methods [19], [20], [21], [22] reveal their strong capabilities
in modeling complex non-linear spatiotemporal relations in
traffic flow data. However, all these models are region-based
traffic prediction, which is completely different from our problem.
A line of studies are conducted to model urban human
mobility based GPS records or geo-social data [23], [24], [25].
Such methods aim to model human mobility with users’ check-ins,
which is also completely different from our problem.

Varieties of research focus on filling-in missing value in
spatiotemporal data. Basic methods learn a linear model to
estimate the missing values. Some studies [1], [2], [3] use
linear regression models to infer missing traffic speed or
travel time based on taxi trajectories. Aslam et al. [4] learn
a regression model with taxi GPS trajectories to estimate
traffic volume. However, regression methods require a great
amount of labeled training data, which is unavailable in our
problem setting.

Another category of prior studies apply principal com-
ponent analysis (PCA) (e.g., [26], [27], [28], [29]) or col-
laborative filtering (CF) (e.g., [5], [30], [31]) to fill in
missing values in spatiotemporal data. PCA-based methods
extract traffic patterns from observed data using various
PCA techniques, such as Bayesian PCA [26], Probabilistic
PCA [27], [28] and FPCA [29]. CF-based methods recover
missing values by decomposing spatiotemporal data into
the product of low-rank matrices. However, both PCA-based
and CF-based methods rely on historical data when filling in.
They are unable to handle our problem since traffic volume of
unmonitored road segments are totally missing.

Semi-supervised learning (SSL) method [32] has been
widely applied for unlabeled data inference, which can be
used for inferring missing values. Label propagation [33], a
classic semi-supervised method, infers unobserved labels by
propagating existing labels on an affinity graph. Other SSL
based methods [34], [35], [36] have been proposed to model
the similarities of vertices in the affinity graph. Although SSL
methods can be applied to our problem, they only consider the
similarities between vertices. Therefore, they fail to utilize rich
traffic flow information for volume inference.

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 3

Other existing work aim to infer traffic volume values of
road segments using loop detector [6], [37], [38], surveillance
cameras [39], [40], or float car trajectories [4], [7], [8]. [41]
tries to model the characteristics of urban vehicular mobility
using camera vehicular mobility images. But they only
extract traffic densities from the images by simply counting
the number of pixels in the images. [42] aims to understand
urban mobility patterns by identifying the most popular
routes through GPS trajectory clustering. Studies [37], [38],
[39] tackle the volume estimation of a single road segment
with loop detectors or surveillance cameras. Thus their
methods cannot infer citywide traffic volume. Zhan et al. [7]
propose a method to estimate citywide traffic volume using
probe taxi trajectories. They estimate travel speeds for vol-
ume inference using full taxi trajectories. Recently, Meng et
al. [6] propose ST-SSL that predicts city-wide traffic volume
values using loop detector incorporating taxi trajectories.
However, both [7] and ST-SSL [6] require full observation of
trajectories, which is not available from surveillance system.
Therefore, those methods cannot be applied to tackle our problem.

Several methods have been proposed to predict complete
trajectories from partial observations. Zheng et al. [43] inves-
tigate how to reduce the uncertainty in low-sampling-rate
trajectories. More specially, they aim to infer the possible
routes for a given low-sampling-rate trajectory. Banerjee et
al. [44] infer uncertain trajectories from network-constrained
partial observations by summarizing all probable routes in
a holistic manner. Yang et al. [45] investigate the problem
of reconstructing hidden trajectories from a collection of
separate spatial-temporal points where trajectory links are
unknown. However, these methods require historical trajectories
as input, which cannot be applied to recovering routes in our
problem.

3 DATA AND PROBLEM

In this section, we first introduce the data used in this paper,
then formulate the traffic volume inference problem.

3.1 Data

We use a real-world dataset collected from a provincial
capital in China (denoted City A). The data consists of two
parts: road network and surveillance camera records.
• Road Network. The road network contains heteroge-

neous information such as road structures, road prop-
erties, traffic signals, etc. We obtain the road network
from OpenStreetMap [46], which is public-available. The
road network information is used for learning similar-
ity and simulating citywide vehicle movements in our
framework.

• Surveillance Camera Records. Surveillance camera
records contain all vehicles detected by all surveillance
cameras in the traffic monitoring system. When any
vehicle passes by a camera, the camera will send a
record containing recognized information about the
vehicle to the server. The format of each record follows
〈vehid, camid, ts〉, which represents a vehicle with plate
id vehid passing the road segment monitored by camera
camid at timestamp ts. Note that due to limitations in
computer vision techniques, a small portion of vehicle

plates are not recognized. A virtual plate number (i.e.,
unknown) is assigned to those vehicles. In our collected
dataset, about 88% of records contain a real vehicle
plant number.

3.2 Problem Definition
We first define the key data structures and notations used in
the paper. We define road segment as follows:
Definition 1 (Road Segment). We split roads into short road

segments. We use intersections as natural separations
of roads. Each road segment connects two adjacent in-
tersections. Note that road segments are directed. Let
R = {r1, r2, . . . , rM} denote all road segments in a city,
where M is the number of road segments.

Each camera is deployed at a corresponding road seg-
ment, namely, the vehicles captured by camera camid pass
through its corresponding road segment. Since the camera
can recognize vehicles and their license plate number, traffic
volume of road segments can be identified by aligning
cameras with road segments.

We define time interval as follows:
Definition 2 (Time Interval). We split time as N non-

overlapping equal-length time intervals and use T =
{t1, t2, . . . , tN} to denote all time intervals.

Definition 3 (Traffic Volume). The traffic volume for road
segment ri during time interval tj is defined as the total
number of vehicles passing through ri during the time
interval tj .

Definition 4 (Camera Based Trajectory). The camera-based
trajectory of a vehicle with plate number id is a sequence
of tuples in chronological order, denoted by {〈id, r, ts〉},
where each tuple 〈id, r, ts〉 represents that the vehicle id
appears on road segment r at timestamp ts.

Obviously, camera-based trajectories of vehicles are in-
complete because only partial road segments are deployed
with surveillance cameras.

We now state our problem as below:
Problem 1 (Citywide Traffic Volume Inference). Given the

road network, camera-based trajectories, and observed
traffic volume, our goal is to infer citywide traffic volume
of any road segment at any time interval.

4 THE FRAMEWORK OF CITYVOLINF

4.1 Overview
Figure 1 illustrates the overall framework of CityVolInf,
which takes the road network and surveillance camera
records as input, and outputs the inference result of citywide
traffic volume values. In particular, our framework consists
of three key components: (1) data preprocessing module that
extracts road network features, traffic volume values and
camera-based trajectories from the raw input data; (2) sim-
ilarity module, which utilizes graph-based semi-supervised
learning method to model spatiotemporal similarities of
traffic volume between road segments, and (3) simulation
module, which generates transitions between adjacent road
segments using SUMO and observed incomplete trajectories
to enhance inference results.

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 4

Openstreetmap Road NetworkSurveillance Camera Records

Camera
Based

Trajectories

Road
Network
Features

Traffic Volume
Values

CityVolInf Learning Citywide Traffic Volumes

Similarity Module Simulation Module

Affinity Graph
Construction

Edge Weights Learning

SSL Inference

Route Inference
via SUMO

Transition Ratio Learning

Transition Constraint

Preprocessing
Module

Fig. 1: Overall framework of CityVolInf.

In what follows, the data preprocessing module is in-
troduced in Section 4.2. Then the similarity module is pre-
sented in Section 4.3. Next in Section 4.4 we discuss the
simulation module. Finally, we elaborate the optimization
in Section 4.5.

4.2 Data Preprocessing Module

The first step of CityVolInf is to preprocess the raw input
data. That is, we extract road network features, traffic vol-
ume values and camera-based trajectories using road net-
work information from Openstreetmap and collected surveil-
lance camera records.
• Road Network Features. We extract features from the

road network. More specifically, we identify several
types of features from the heterogeneous OpenStreetMap
data for each road segment, including starting/ending
locations, road segment length, road width, road type,
and speed limit. Let F = {f1, f2, · · · , fM} denote the
feature vector set, where fi is the feature vector of road
segment ri.

• Traffic Volume Values. According to Definition 3 in
Section 3.2, the traffic volume values for a given road
segment are counted using captured vehicles at the
aligned camera during each time interval. Because
vehicle detection technique is very accurate, counted
traffic volume can be used as ground truths. The traffic
volume value of road segment ri during time interval
tk is represented as xki , which is a non-negative integer.
Moreover, let Xk ∈ RM×1 denote the traffic volume
vector for all road segments at time interval tk, and X ∈
RM×N denote traffic volume values for all segments in
all time intervals. Namely, X = [X1,X2, · · · ,XN].

• Camera Based Trajectories. We extract large amounts
of camera-based trajectories from the records with valid
real plate numbers. More specifically, the trajectory Ωid

for vehicle id can be identified by listing all surveillance

camera records containing the same id in chronological
order. We use Ω = {Ωid} to denote all such camera
based trajectories.

4.3 Similarity Module
Spatial and temporal correlations on road network play
important roles in the traffic inference. In other words, the
traffic volume values of different road segments are corre-
lated with each other in spatial and temporal perspectives.
For example, the traffic volume value of one road segment
tends to be larger if all neighboring road segments have
higher volume at the same time. The traffic volume of one
road segment is likely to be lower during a time interval if
we observed low traffic volume during the corresponding
time interval in the past several days. Inspired by above
observations, we build an affinity graph to describe the cor-
relations between road segments, where each road segment
during a time interval is a node in the graph. The edges
in the affinity graph represent correlations and similarities
between road segments at different time intervals. After
defining the affinity graph, we can infer city-wide traffic vol-
ume values by using graph-based semi-supervised learning
(SSL) approach [33]. We will first introduce how to build
the affinity graph, then infer city-wide traffic volume values
using graph-based semi-supervised learning approach.

Affinity Graph: an affinity graph can be represented by
a multi-layer weighted graph G = 〈V, E ,W〉 (as shown in
Figure 2). V = {V1, · · · ,VN} is the set of all road segments
at all time intervals, where Vk = {vk1 , vk2 , · · · , vkM} is a layer
that contains all nodes at time interval tk, and vki represent
road segment ri at time interval tk. E is the set of all edges,
which can be divided into two types. The first type is spatial
edges between nodes at the same time interval. This type
of edges reflect spatial correlations between road segments.
The second type is temporal edges between two nodes that
represent the same road segment at different time intervals
(i.e., edges between different vki and vk−1i). Those edges
represent temporal similarities of the same road segment
at different time intervals. W is the set of weights on the
edges E . For simplicity, let V = L

⋃
U, where L denotes the

set of road segments with observed traffic volume (labeled
nodes), and U is the set of road segments without traffic
volume information (unlabeled nodes). Traffic volume for
the nodes in U need to be further inferred.

To construct edges in the affinity graph, we consider the
following five types of correlations from spatial and tempo-
ral perspectives. Figure 2 shows an example of the affinity
graph. We build multiple layers to model spatiotemporal
similarities.
• Edges between adjacent road segments. Previous

study [6] tells that traffic volume patterns of adjacent
road segments are more similar to each other because
vehicles traverse between them frequently. For exam-
ple, a traffic peak on a certain road segment would
affect its neighbors via vehicle movements. Therefore,
traffic volume values of adjacent road segments in the
same time interval are likely to be similar. Inspired by
this, we add an edge for each pair of nodes which
represent adjacent road segments.

• Edges between reachable road segments. In addition
to adjacency, reachable road segments are likely to have

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 5

3

1

2

4

5

3

1

2

4

5

3

1

2

4

5

3

1

2

4

5r

ti-τ’
Periodical Layer

…

……

…ti-τ
Periodical Layer

ti-1
Recent Layer

ti
Current Layer

Fig. 2: An example of the affinity graph. There are five road
segments, including three monitored segments (i.e., 3, 4 and
5 in black) and two unmonitored segments (i.e., 1 and 2
in white). The boundary color of node indicates road type.
For example, nodes 1, 4 and 5 are of the same type. Solid
lines within each layers are spatial edges, where gray, cyan
and yellow represent edges between adjacent, reachable and
same-type road segments respectively. Dash lines connect-
ing nodes from different layers denotes temporal edges,
where purple ones are between recent layers, and red ones
are between periodical layers.

0 200 400 600 800 1000 1200 1400
Time

0

100

200

300

400

Vo
lu
m
e

Fig. 3: Traffic volume of a road segment in City A.

similar traffic patterns. For example, two nearby road
segments may have similar traffic volume patterns even
if they are not adjacent, especially when vehicles can
traverse from one to another easily.
To model the similarities between reachable road seg-
ments, we first find reachable road segments using Eu-
clidean distance. Then we select top λ nearest neighbors
for each unmonitored road segment, and add edges
between the road segment and selected neighbors.

• Edges between same type road segments. According
to domain experts, road segments that belong to the
same type (e.g., highway, trunk, primary.) tend to have
similar traffic patterns. Because we aim to leverage few
road segments with traffic volume data for inference,
we connect every unmonitored road segment to all
monitored road segments of the same type.

• Edges between recent time intervals. Traffic volume
patterns have strong temporal dependencies. Gener-
ally, the volume on a certain road segment would
not change dramatically during a relatively short time
period. We connect every node to the corresponding
node in the previous time intervals.

• Edges between periodical time intervals. Daily traffic
patterns have strong temporal periodicity. The traffic
volume at a specific time interval should be close to

its relevant time intervals in previous time (e.g., daily,
weekly and monthly periods). For example, Figure 3
shows the traffic volume of a road segment in two
weeks. We observe the strong daily and weekly peri-
odicities from the traffic volume pattern. To incorporate
such periodicities, we connect each node to previous
corresponding ones with the most periodic similarities
(e.g., nodes one day before, one week before, etc.). In
this paper, we consider daily and weekly periodicity.

The next step of building affinity graph is to learn
weights on edges, which represent similarities between
nodes. If two nodes are more similar, the weight on the edge
between them should be larger. We use features on nodes to
learn weights, following three steps:

1) Feature Scaling: To avoid the similarity being governed
by any particular features, we first standardize F by
applying Z-normalization on the values of all feature
vectors so that the values have zero-mean and one-
variance.

2) Spatial Similarity: Intuitively, if the feature vectors of
two connected nodes within the same time interval are
more close, their similarity weight should be higher. To
generate weights for spatial edges within each layer, we
define a linear function over the difference of feature
vectors from two nodes connected by spatial edges.
Suppose vi and vj are two nodes from the same time
interval, and fi and fj are their normalized feature
vectors respectively, we define the weight between vi
and vj as:

wi,j = w(fi, fj) = exp
(
− a · (fi − fj) + c

)
,

where a is a row vector of parameters, c is the bias
parameter, and “·” denotes the inner product of vectors.
To estimate a and c, we minimize the following loss
function that defines on the sub-network of nodes with
observed traffic volume:

a, c = arg min
a,c
L0

= arg min
a,c

N∑
k=1

M∑
i,j=1

vk
i
,vk

j
∈L

exp
(
− a · (fi − fj) + c

)
(xki − xkj)2.

3) Temporal Similarity: Temporal similarities could be mod-
eled by weights on temporal edges between different
layers of the affinity graph. To explicitly capture tem-
poral dependencies, we manually set all weights to 1
on edges between different layers, which reflects the
temporal characteristic of traffic volume values.

Given the affinity graph with known weights, we can
use a graph-based semi-supervised learning (SSL) model to
infer citywide missing traffic volume values. The basic idea
of this SSL model is that if two nodes are connected by an
edge with larger weight, their traffic volume values tend to
be more similar. To model such similarities from the view of
edge weights, we propose the following loss function:

L1 = LS + αLT

=
1

2

N∑
k=1

M∑
i,j=1

wi,j(x
k
i − xkj)2 +

α

2

N−1∑
k=1

M∑
i=1

(xk+1
i − xki)2,

(1)

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 6

where LS and LT are loss functions for spatial and temporal
similarities respectively, and α is the coefficient parameter.

4.4 Simulation Module
Although the similarity module successfully models spa-
tial and temporal similarities through graph-based semi-
supervised learning approach, it still fails to capture dy-
namic characteristics of traffic volume. That is, transitions of
traffic volume between adjacent road segments are ignored
when using conventional semi-supervised learning method.
Despite similarities, traffic volume also affect each other
explicitly via a “weighted-sum” process (i.e., transition).
Because a lot of vehicles are traversing continuously on
roads, most vehicles on one road segment will finally arrive
at adjacent road segments. For example, if 100 vehicles are
moving alongside one road segment towards a crossroad,
we aim to answer the following question: how many ve-
hicles will go straight ahead, how many of them will turn
left, and how many of them will turn right? Suppose we
can answer the question for every road segment, we can
approximate traffic volume values by propagating those at
road segments with data.

Inspired by above discussion, we model the transition
of traffic volume in our framework. More specifically, we
first learn transition ratio matrices from camera-based trajectories,
then propose a simulation module utilizing learned transition
ratios.

4.4.1 Transition Probability
To model the transition between adjacent road segments,
an intuitive approach is to generate vehicle numbers di-
rectly from camera-based trajectories. If two adjacent road
segments both are monitored by cameras, the transition
between them can be identified from counting. However,
it is unpractical to model traffic volume transitions from
camera-based trajectories directly. Because camera-based
trajectories fail to cover all vehicles in the city. Only 88%
of records contain valid plate numbers, some trajectories
are missing even if the vehicle (counted towards traffic
volume) is detected. Therefore, directly counting transition
will produce inaccurate results.

To tackle the aforementioned limitations, CityVolInf
learns average transition probability as an alternative ap-
proach. Transition probability can be considered as the
conversion rate of traffic volume between adjacent road
segments. We use a real value pki,j ∈ [0, 1] to represent
the average transition probability. That is, pki,j denotes the
conditional probability of vehicles traversing from rj to ri
in time interval tk:

pki,j = P (ri\rj | rj , tk) =
of ri\rj in tk

xkj
, (2)

where P (·|·) denotes conditional probability, ri\rj means
“traversing from rj to ri”.

Transition probability can be learned from partial miss-
ing trajectories. Since cameras are almost uniformly de-
ployed in the city, extracted camera based trajectories can
be considered as unbiased samples of all vehicle trajecto-
ries. That is, the collected vehicle trajectories are a coarse
representation of full observed vehicle movements.

Rd 3

Rd 2

Rd 1

S
t

1

S
t

2

S
t

3

r1

r4

r3

r2

A

B

C

D

r5

r6

Fig. 4: An example of potential routes given segments of
camera based trajectories.

Given transition probability related to road segment ri
and its neighbors (denotes by rn1 , rn2 , . . . rnq), the traffic
volume of ri can be approximated using volume values of
its neighborhoods at last time interval:

xki =

q∑
l=1

pk−1i,nl
xk−1nl

.

For simplicity, we define transition matrices as follows:
Transition Matrices. Transition matrices

P = {P1,P2, · · · ,PN} are a series of matrices, where
Pk ∈ RM×M , Pk

i,j = pki,j , and M and N are the number of
the road segments and time intervals respectively. Namely,
Pk contains transition probability in time interval tk.

4.4.2 Learning Transition Probability

It is still unfeasible to learn transition probability directly
because camera-based trajectories only provide partial ob-
servations at monitored points, and details about vehicle
movements between cameras are missing if either of two
adjacent road segments is not monitored. That is, transition
probability related to any unmonitored road segments is
missing in camera-based trajectories. We use “route” to de-
note detailed vehicle movements between nearby cameras.
Compared with camera-based trajectories, routes contain
detailed vehicle movements between adjacent road seg-
ments. To bridge the gap between trajectories and routes,
our next step is to estimate missing portions of camera
based trajectories. Figure 4 shows two examples of the route
inference.A→ B andC → D are two parts of camera based
trajectories. The detail traversing routes between A and B
(or C and D) remain unknown and need further inference.

A basic approach for route inference given camera based
trajectories is formulating it as a path searching problem
on the road network. Following this direction, the shortest
path can be used as an approximation for route inference.
To improve the inference results, restrictions and constraints
can be also proposed and added to the searching algorithm
to consider complex real-world correlations. Inspired by
[44], sampling-based method can be also applied to infer
possible routes given camera-based trajectories. However,
many dynamical factors and properties of roads are hard
to formulate in sampling, such as multiple lanes and inter-
changes.

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 7

To overcome those limitations, we propose a novel
method by incorporating a traffic simulator (i.e., SUMO)
for conditional route inference. SUMO is a citywide traf-
fic simulator, which generates vehicles and models their
movements on road network in a simulating manner. SUMO
also considers multiple factors simultaneously during the
simulation, such as real-time traffic volume, differences be-
tween lanes and traffic signals. So the dynamicity of traffic is
fully explored. Moreover, since different routes are planned
jointly, the interactions are taken into account as well.
Therefore, routes from SUMO are more capable to represent
real-world vehicle movements. Note that although micro-
view results (e.g., one inferred route for a specific vehicle)
could be different from ground truths, macro-view statistics
(e.g., transition ratios) collected from inferred routes are
stable and helpful because they reflect global behaviors.
Our experiment in Section 5 demonstrate the effectiveness
of SUMO compared with path searching algorithm.

Given the road network of a city and the camera-based
trajectories observed at all cameras, the simulator can gener-
ate complete routes through dynamic simulation following
three steps: (1) road network and segments of camera-based
trajectories (e.g., A → B in Figure 4) are given as the
input for SUMO; (2) based on these input data, SUMO will
generate individual vehicles at beginnings of each partial
trajectory at corresponding time. Those vehicles will tra-
verse towards their destination road segments (i.e., ends
of partial trajectories); (3) detail routes for each vehicle can
be collected for the outputs of SUMO after the simulation.
Given inferred routes, transition ratios in P can be estimated
by Eq. (2). The transition probability inference process is
showed in Algorithm 1.

Algorithm 1 Transition Probability inference using SUMO

Input: Road Network G and Camera Based Trajectories Ω.
Output: Transition Matrices P .

1: TraSeg ← ∅
2: for Ωi ∈ Ω do
3: TraSeg ← TraSeg ∪ Split(Ωi)
4: InfRout← SUMO(G, T raSeg)
5: for road segment ri do
6: for road segment rj ∈ N (ri) do
7: for time interval tk do
8: Pk

i,j ←
ri\rj in tkin InfRout

xk
j

4.4.3 Transition Based Volume Inference

The transition matrices P bridges traffic volume values at
the last time interval and those at the current time interval.
Namely, Xk can be linearly transformed to Xk+1 using cor-
responding Pk. We incorporate the transition probabilities
P in our framework to model transitions of citywide traffic
volume. Specifically, we propose the simulation module
whose loss function is formulated as below:

L2 =
1

2

N−1∑
k=1

‖Xk+1 −PkXk‖22, (3)

where ‖ · ‖22 denotes l2-norm.

4.5 Optimization
Combining Eq. (1) and Eq. (3), we have the final loss
function of the framework CityVolInf:

L = L1 + βL2 =
1

2

N∑
k=1

M∑
i,j=1

wi,j(x
k
i − xkj)2

+
α

2

N−1∑
k=1

M∑
i=1

(xk+1
i − xki)2 +

β

2

N−1∑
k=1

‖Xk+1 −PkXk‖22,

(4)
where α and β are hyper-parameters that give different
emphases on temporal and simulation terms.

Then our goal is to find traffic volume values X for all
road segments, such that the loss function (4) is minimized:

X = arg min
X
L (5)

To solve the above problem, we adopt an iterative updat-
ing algorithm, where each time all values in X are updated
incrementally. Because Eq. (4) is convex, and X belongs to a
convex set (i.e., R+ M×N where R+ denotes the set of non-
negative real number), X will achieve global optimal value
in the end. Specifically, the update rule for X is as follow:

X← X− η ∂L
∂X

,

where η is the learning rate. We repeat above steps until
convergence or reaching the maximum number of iterations
ψ. The final result of X contains inferred city-wide traffic
volume values.

The time complexity of the optimization is O(ψNM3),
where ψ is the maximum iteration number of optimization,
N is the total number of time intervals, andM is the number
of road segments.

5 EXPERIMENT

5.1 Datasets
We evaluate CityVolInf on a real-world large-scale dataset
collected from a provincial capital in China. Table 1 shows
the statistics of the dataset in detail.
• Road Network. We select the downtown area (15km×

10km) in the provincial capital city as the road net-
work. Except road segments, the road network also
contains heterogeneous information such as intersec-
tions, ramps, crosswalks, etc. Note that we fix the road
network for all experiments except in Section 5.6.2,
where we study the performance w.r.t the size of the
road network.

• Surveillance Camera Records. The dataset contains
405, 370, 631 records from 1, 704 surveillance cameras
over the period of 08/01/2016 - 08/31/2016. More
than 88% records contain valid vehicle plate number
according to our statistic.

5.2 Experiment Setting
5.2.1 Preprocessing
Spatial features and contextual information are extracted
from the select road network. Discrete features such as road
type are incorporated using one-hot representation. 1, 248

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 8

TABLE 1: Statistics of surveillance camera dataset

Time span 08/01/2016 - 08/31/2016
Num. of surveillance cameras 1,704

Num. of records 405,370,631
Num. of total vehicles 11,299,927

Avg. num. of vehicles per day 1,155,415

road segments are collected from the selected downtown
area after preprocessing, and 257 among them are labeled
with observed traffic volume during the 31 days. We filter
out samples when ground truth traffic volume values are
smaller than 5 when testing our framework. This is a com-
mon practice in industry and academy [22]. Road segments
with very low traffic volume are of little interests. Moreover,
11, 299, 927 camera-based trajectories are extracted from the
records.

5.2.2 Hyper-parameter Setting
We set the length of time intervals to 15 minutes. We
randomly select 80% monitored road segments and use all
their traffic volume as the training set. The traffic volume
from the last week (08/25/2016 to 08/31/2016) of remained
20% road segments is used as the testing set (the traffic
volume from the time period before 08/25/2016 are used
for neither training nor testing). We set maximum iteration
number ψ to 1, 000. We set coefficient parameters α, β and
η to 4.6, 8.3, and 25, respectively based on grid searching.
We use the default setting of SUMO in our experiment.

5.3 Evaluation Methods and Metrics
5.3.1 Baselines
CityVolInf is compared with the following baselines: (1)
two average-based methods; (2) three regression methods;
and (3) two semi-supervised learning methods. For meth-
ods that require features, we use the same spatial features
extracted from the road network, as described in Section 4.2.
• Spatial kNN. Spatial kNN (SkNN) simply selects nearest

top k road segments with traffic volume data, and uses
the average of their volume values at each time interval
as the prediction.

• Contextual Average. Contextual Average (CA) use the
average result of volume values from same-type road
segments (e.g., primary, and express way) as the pre-
diction.

• Linear Regression. Linear Regression (LR) is trained on
all road segments with traffic volume. We use the same
spatial features for this model. We train one regression
model for one time interval.

• XGBoost. XGBoost (XGB) [47] is a boosting-tree-based
method which is popular in data mining community.
Similar to LR, we train one model for one time interval.

• Multiple Layer Perception. Multiple Layer Perception
(MLP) is a four-layer fully connected neural network.
The hidden units of each layer are 64, 128, 128, 64. The
training and testing of MLP are the same to LR and
XGB.

• Basic SSL [33]. We implement a classical graph-based
semi-supervised learning method with loss function

L =
∑
ai,j(x

k
i − xkj)2. The Basic SSL does not consider

temporal correlation. We learn the weight ai,j based on
the distance between road segments.

• Spatio-Temporal Semi-Supervised Learning (ST-
SSL) [6]. ST-SSL is state-of-the-art method which ap-
plies semi-supervised learning to inferring citywide
traffic volume with loop detector and taxi trajectories.
We remove the taxi trajectory part because dense trajec-
tories are unavailable in our problem.

5.3.2 Variations.
We further propose three variations of our proposed frame-
work to study the effectiveness of the data-driven module,
the simulation module, and the simulation module with
data-driven route inference, respectively.
• CVISimi. This is a variant of CityVolInf that only con-

tains the Similarity module (i.e., no simulation mod-
ule).

• CVISumo. This variant of CityVolInf only maintains
the simulation module (i.e., SUMO), while excludes the
similarity module.

• CVIPS. Inspired by [44], we propose a variant of
CityVolInf that samples dense trajectories using Path
Searching algorithms. More specifically, we first sample
potential route candidates using path searching algo-
rithm (i.e., routes no longer than 1.5 times the length
of the shortest path). Then the traversing time for each
candidate is estimated using speed limits of road seg-
ments. Next, traversing time of routes are punished by
adding a half minute per left or right turn. Finally, the
route with least traversing time is selected. Compared
to CityVolInf, the difference is that CVIPS alters the
way to generate P .

5.3.3 Metrics
We use Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) of inferred traffic volume values
to evaluate the performance of inference methods, which are
defined as follow:

RMSE =

√√√√ 1

S

S∑
l=1

(xl − x̂l)2, MAPE =
1

S

S∑
l=1

|xl − x̂l|
x̂l

,

where xl ∈ {xki } is a test sample, x̂l is the ground truth of
xl, and S denotes the total number of test samples.

Note that RMSE focuses more on larger values, while
MAPE receives more punishments from smaller values.
Therefore, the combination of two metrics evaluates the
performance of inference methods more comprehensively.

5.4 Effectiveness Comparison

5.4.1 Overall Analysis.
We first evaluate the overall performance of CityVolInf on
collected dataset compared with all baselines. We run all
methods 50 times and report the average result and variance
for each method. Table 2 shows the comparison results
among all methods. Based on the experiment results, we
make following observations:

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 9

TABLE 2: Comparison with different baselines.

Method Metrics
RMSE MAPE

Spatial kNN (top 10) 137.441 ± 0.000 0.679 ± 0.000
Spatial kNN (top 100) 131.622 ± 0.000 0.678 ± 0.000
Contextual Average 127.107 ± 0.000 0.696 ± 0.000
Linear Regression 140.366 ± 0.000 0.893 ± 0.000
XGBoost 124.425 ± 0.004 0.669 ± 0.003
MLP 126.210 ± 1.264 0.797 ± 0.013
Basic SSL 133.661 ± 0.001 0.730 ± 0.000
ST-SSL 123.753 ± 0.004 0.601 ± 0.001
CityVolInf 109.035 ± 0.003 0.497 ± 0.001

TABLE 3: Comparison with different variations.

Method Metrics
RMSE MAPE

CVISimi 126.215 ± 0.000 0.621 ± 0.000
CVISumo 125.264 ± 0.001 0.651 ± 0.001
CVIPS 122.417 ± 0.001 0.561 ± 0.000
CityVolInf 109.035 ± 0.003 0.497 ± 0.001

(1) CityVolInf significantly outperforms average-based
methods (i.e., SkNN and CA) and regression methods (i.e.,
LR, XGB and MLP) w.r.t both RMSE and MAPE. Obviously,
those methods ignore spatiotemporal correlations and tran-
sition correlations, thus resulting in poor accuracy.

(2) CityVolInf is superior to the Basic SSL. The perfor-
mance of Basic SSL is limited because the distance-based
similarity fails to capture a variety of information including
temporal correlations and traffic volume transitions.

(3) CityVolInf also significantly outperforms the state-
of-the-art ST-SSL method in terms of RMSE and MAPE. ST-
SSL incorporates specific spatiotemporal characteristics of
traffic volume by building a spatiotemporal affinity graph,
thus outperforms other methods by a considerable margin.
However, CityVolInf reduces RMSE and MAPE by 11.89%
and 17.30% compared with ST-SSL, respectively. The huge
improvements are mainly attributed to our simulation mod-
ule, which incorporates incomplete camera based trajecto-
ries for modeling dynamic transition relationships explicitly
via a traffic simulator.

5.4.2 Variations Study
We further study the effectiveness of the similarity module
and the simulation module. The results of different varia-
tions are shown in Table 3.

The performances of CVISimi and CVISumo are limited
because they both ignore important characteristic of traffic
volume. Both spatiotemporal similarities and transition rela-
tionships between road segments are essential for a higher
accurate inference. CVISimi achieves similar performance
compared with ST-SSL in MAPE, while CVISumo has a rel-
atively lower accuracy. One potential reason is that because
of the sparsity of cameras, inferring purely with transitions
may magnify existing errors, especially at road segments far
away from monitored ones. CVIPS replaces the simulator
with a path searching based route inference algorithm. As
mentioned in Section 4.4, the searching algorithm approxi-
mates volume transitions between adjacent road segments
using a naive approach, which fails to model dynamical
factors. Compared to CVIPS, the simulation approach in

CityVolInf exhibits better capability in modeling complex
real-world scenarios.

5.5 Parameter Sensitivity
5.5.1 Coefficient Parameters.
We explore how the performance of CityVolInf changes
with respect to regularization coefficients. To evaluate the
impacts of α and β on inference performance, we perform
the experiments by varying one of either α and β when
fix another one. The analysis of temporal parameter α in
similarity module and simulation module parameter β w.r.t.
RMSE and MAPE are shown in Figure 5. We use the grid
search method to find the best parameter settings. As we
can see, both RMSE and MAPE of CityVolInf first decrease
to the minimal values and then increase as the coefficient
parameters increasing. This is intuitive because both tempo-
ral correlations and transition relationships are essential for
a precise inference. As shown in Figure 5(a), the RMSE and
MAPE reach low values when α falls around 4.6. Similarly,
the RMSE and MAPE achieve minimum values when β is
8.3 in Figure 5(b).

In addition, it is clear that the inference error decreases
rapidly with β increasing from 0. This suggests our pro-
posed simulation module contributes a lot to the overall
performance.

0.01 0.1 1 4.6 10 100
α

100

110

120

130

140

RM
SE

RMSE

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
AP

E

MAPE

0.01 0.1 1 8.3 10 100
β

100

110

120

130

140

RM
SE

RMSE

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
AP

E

MAPE

(a) Parameter α (b) Parameter β

Fig. 5: Results of varying the coefficient parameters.

5.5.2 Number of Reachable Road Segments λ.
We study the impact of hyper-parameter λ that controls
the number of reachable nearby road segments when
building affinity graph. From Figure 6, we observe that
CityVolInf nearly keeps stable performance with respect to
λ in terms of both RMSE and MAPE. This is may because
CityVolInf incorporates multiple spatiotemporal factors si-
multaneously when building the affinity graph, resulting
in lower sensitivity with respect to one specific kind of
spatial edges. Although the number of reachable edges
is altered, other kinds of spatial edges could contribute
more when learning spatial weights. Moreover, temporal
correlations also play important roles in inference as well.
Finally, the entire similarity module contributes consistently
to the overall performance.

5.5.3 Training and Testing Ratio
Figure 7 shows the results of all methods in terms of RMSE
and MAPE by varying the ratio of training set from 50%
to 90%. As we can see, our method continuously performs
better than all baselines even with very few training data.

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 10

5 10 15 20 25 30
λ

100

105

110

115

120

125

130
RM

SE

5 10 15 20 25 30
λ

0.4

0.5

0.6

0.7

M
AP

E

(a) RMSE (b) MAPE

Fig. 6: Results of varying the hyper-parameter λ.

In addition, the RMSE and MAPE values of all methods
increase as the ratio of training data increases. Although
the performances of some baseline methods (e.g., LR, XGB,
MLP) improves obviously when using more training data,
our proposed CityVolInf still exhibits significant superior-
ity.

0.5 0.6 0.7 0.8 0.9100

110

120

130

140

150

160

170

RM
SE

SKNN
CA
LR
MLP

XGB
B-SSL
ST-SSL
CityVolInf

0.5 0.6 0.7 0.8 0.90.4

0.6

0.8

1.0

1.2

1.4

1.6

M
AP

E

SKNN
CA
LR
MLP

XGB
B-SSL
ST-SSL
CityVolInf

(a) RMSE (b) MAPE

Fig. 7: Results of varying the ratio of training data.

5.5.4 Training and Testing Length

We next evaluate the performance of our method in terms of
RMSE and MAPE by varying the length of training set from
one week to four weeks compared to SSL-based methods.
The rest of data is treated as testing data. Namely, the length
of testing data varies from three weeks to four days. Figure 8
shows the RMSE and MAPE results of our method and
SSL-based baselines with respect to the length of training
set. As expected, our method consistently outperforms SSL-
based baselines in all cases. As the training set increases,
the inference accuracy of our method increases in both
terms of RMSE and MAPE, and then keeps stable when
the training set reaches about three weeks. Moreover, our
method is more better than SSL-based baselines in a training
set with less length, which demonstrates that our proposed
simulation module is useful for inferring traffic volume as
an important complement to the similarity module.

5.6 Scalability

We conduct experiments to study the scalability of
CityVolInf in terms of inference accuracy and running
time by varying the number of time intervals N and the
number of road segments M . We fix the testing set in all
experiment as described in Section 5.2, such that all results
are comparable.

7 11 15 19 23 27
#days

100

110

120

130

140

150

160

RM
SE

B-SSL
ST-SSL

CityVolInf

7 11 15 19 23 27
#days

0.4

0.6

0.8

1.0

1.2

M
AP

E

B-SSL
ST-SSL

CityVolInf

(a) RMSE (b) MAPE

Fig. 8: Results of varying the length of training data.

5.6.1 Varying the Number of Time Intervals N
First we study the scalability w.r.t N . While fixing the
testing set, the total number of time intervals in training
set increases from 672 (i.e., 7 days corresponding to testing
set) to 2976 (i.e., 31 days) by 96 (i.e., one-day time span) in
reverse chronological order. Figure 9 shows RMSE, MAPE
and running time of CityVolInf with the number of training
data.

From Figure 9(a), similarly with experiment in Sec-
tion 5.5.4, both RMSE and MAPE on the testing set keep
declining at first, then convergence after N reaching a
certain threshold (about 3 weeks). This indicates that using
about 3-week historical data is sufficient for CityVolInf to
model temporal correlations and transition relationships.

Figure 9(b) shows the total running time of the optimiza-
tion w.r.t.N . We can see that the running time keeps linearly
increasing. This is expected because the time complexity
of the optimization is O(ψNM3) which is linear with the
number of time interval N .

7 10 13 16 19 22 25 28 31
#day

110

115

120

125

130

RM
SE

RMSE

0.50

0.55

0.60

0.65

M
AP

E

MAPE

7 10 13 16 19 22 25 28 31
#day

20

40

60

80

100

CP
U
Ti
m
e
(s
ec
on

d)
Time

(a) RMSE and MAPE (b) Running time

Fig. 9: Scalability evaluation w.r.t. N .

5.6.2 Varying the Number of Road Segments M
We further vary the size of selected road network so that
the number of road segments increases from 900 to 2, 100
by 300 each time. As shown in Figure 10, the running time
nearly keeps linear increasing w.r.t. M3, which is consistent
with our previous analysis on algorithm complexity. The
inference accuracy of CityVolInf is relatively stable w.r.t.
M . The reason is that the inference of traffic volume for
a road segment does not rely on faraway road segments.
Furthermore, the simulation module defines traffic transi-
tions only on adjacent road segments, which is not affected
by size of road networks basically. This also suggests our
proposed framework is robust and effective w.r.t. the size of
road network.

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 11

900 1200 1500 1800 2100
#road segment

106

108

110

112

114
RM

SE
RMSE

0.46

0.48

0.50

0.52

0.54

M
AP

E

MAPE

900 1200 1500 1800 2100
#road segment

100

200

300

400

500

CP
U
Ti
m
e
(s
ec
on

d)

Time

(a) RMSE and MAPE (b) Running time

Fig. 10: Scalability evaluation w.r.t. M .

6 CONCLUSION

Surveillance cameras are widely used to monitor urban
traffic situations in modern cities. However, the coverage
is still limited because of high costs. In this paper, we
introduce a novel framework CityVolInf for citywide traf-
fic volume inference with road network and surveillance
camera records. We first construct an affinity graph of road
segments at different time intervals according to their spatial
and temporal similarities. We further incorporate a novel
simulation module that utilizing rich and complex road net-
work information and incomplete camera based trajectories
to model traffic volume transitions between adjacent road
segments, which results in a significant improvement of
accuracy. We evaluate our method on a real-world large-
scale traffic dataset collected in a provincial capital in China.
CityVolInf exhibits extraordinary accuracy compared with
all baselines. Experimental results on parameter sensitivity,
robustness and scalability demonstrate the advantages of
CityVolInf with respect to citywide traffic volume inference.

In future work, we plan to extend our framework to
an online inference manner to reduce the running time for
working more efficiently in real time systems. In addition,
we would like to investigate the relation between the simi-
larity and simulation modules to be generalized to different
situations.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61773331,
the National Science Foundation under Grant Nos. 1544455,
1652525 and 1618448, and the China Scholarship Council
under Grant No.: 201608370018. Zhenhui Li would like to
acknowledge the support from Haile Family Early Career
Professorship. The views and conclusions contained in this
paper are those of the authors and should not be interpreted
as representing any funding agencies.

REFERENCES

[1] H. Hu, G. Li, Z. Bao, Y. Cui, and J. Feng, “Crowdsourcing-based
real-time urban traffic speed estimation: From trends to speeds,”
in Data Engineering (ICDE), 2016 IEEE 32nd International Conference
on. IEEE, 2016, pp. 883–894.

[2] Z. Shan, D. Zhao, and Y. Xia, “Urban road traffic speed estimation
for missing probe vehicle data based on multiple linear regres-
sion model,” in Intelligent Transportation Systems-(ITSC), 2013 16th
International IEEE Conference on. IEEE, 2013, pp. 118–123.

[3] J. Zheng and L. M. Ni, “Time-dependent trajectory regression
on road networks via multi-task learning,” in Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI
Press, 2013, pp. 1048–1055.

[4] J. Aslam, S. Lim, X. Pan, and D. Rus, “City-scale traffic estimation
from a roving sensor network,” in Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems. ACM, 2012, pp.
141–154.

[5] X. Yi, Y. Zheng, J. Zhang, and T. Li, “St-mvl: filling missing values
in geo-sensory time series data,” in Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence. AAAI Press,
2016, pp. 2704–2710.

[6] C. Meng, X. Yi, L. Su, J. Gao, and Y. Zheng, “City-wide traffic
volume inference with loop detector data and taxi trajectories,”
in Proceedings of ACM International Conference on Advances in Geo-
graphical Information Systems, 2017.

[7] X. Zhan, Y. Zheng, X. Yi, and S. V. Ukkusuri, “Citywide traffic
volume estimation using trajectory data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 2, pp. 272–285, 2017.

[8] A. Gühnemann, R.-P. Schäfer, K.-U. Thiessenhusen, and P. Wagner,
“Monitoring traffic and emissions by floating car data,” 2004.

[9] “SUMO:,” http://sumo.sourceforge.net/, 2017.
[10] S. Lee and D. Fambro, “Application of subset autoregressive

integrated moving average model for short-term freeway traffic
volume forecasting,” Transportation Research Record: Journal of the
Transportation Research Board, no. 1678, pp. 179–188, 1999.

[11] Y. Kamarianakis and P. Prastacos, “Forecasting traffic flow con-
ditions in an urban network: Comparison of multivariate and
univariate approaches,” Transportation Research Record: Journal of
the Transportation Research Board, no. 1857, pp. 74–84, 2003.

[12] B. Williams, “Multivariate vehicular traffic flow prediction: evalu-
ation of arimax modeling,” Transportation Research Record: Journal
of the Transportation Research Board, no. 1776, pp. 194–200, 2001.

[13] B. M. Williams and L. A. Hoel, “Modeling and forecasting ve-
hicular traffic flow as a seasonal arima process: Theoretical basis
and empirical results,” Journal of transportation engineering, vol. 129,
no. 6, pp. 664–672, 2003.

[14] B. Ghosh, B. Basu, and M. O’Mahony, “Multivariate short-term
traffic flow forecasting using time-series analysis,” IEEE transac-
tions on intelligent transportation systems, vol. 10, no. 2, pp. 246–254,
2009.

[15] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu,
“Latent space model for road networks to predict time-varying
traffic,” Proceedings of the 22th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 2016.

[16] F. Wu, H. Wang, and Z. Li, “Interpreting traffic dynamics using
ubiquitous urban data,” in Proceedings of the 24th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems. ACM, 2016, p. 69.

[17] B. Pan, U. Demiryurek, and C. Shahabi, “Utilizing real-world
transportation data for accurate traffic prediction,” in Data Mining
(ICDM), 2012 IEEE 12th International Conference on. IEEE, 2012,
pp. 595–604.

[18] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, and J. Ye,
“The simpler the better: A unified approach to predicting original
taxi demands on large-scale online platforms,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017.

[19] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual
networks for citywide crowd flows prediction,” Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[20] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “Dnn-based prediction
model for spatio-temporal data,” in Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2016, p. 92.

[21] H. Yao, X. Tang, H. Wei, G. Zheng, Y. Yu, and Z. Li, “Modeling
spatial-temporal dynamics for traffic prediction,” arXiv preprint
arXiv:1803.01254, 2018.

[22] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and
Z. Li, “Deep multi-view spatial-temporal network for taxi demand
prediction,” Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[23] R. Jiang, X. Song, Z. Fan, T. Xia, Q. Chen, S. Miyazawa, and
R. Shibasaki, “Deepurbanmomentum: An online deep-learning
system for short-term urban mobility prediction.” in AAAI, 2018.

[24] S. Park, J. Serra, E. F. Martinez, and N. Oliver, “Mobinsight: A
framework using semantic neighborhood features for localized

IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, JUNE 2019 12

interpretations of urban mobility,” ACM Transactions on Interactive
Intelligent Systems (TiiS), vol. 8, no. 3, p. 23, 2018.

[25] P. Wang, Y. Fu, J. Zhang, X. Li, and D. Lin, “Learning urban
community structures: A collective embedding perspective with
periodic spatial-temporal mobility graphs,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 9, no. 6, p. 63, 2018.

[26] L. Qu, Y. Zhang, J. Hu, L. Jia, and L. Li, “A bpca based missing
value imputing method for traffic flow volume data,” in Intelligent
Vehicles Symposium, 2008 IEEE. IEEE, 2008, pp. 985–990.

[27] L. Qu, L. Li, Y. Zhang, and J. Hu, “Ppca-based missing data
imputation for traffic flow volume: A systematical approach,”
IEEE Transactions on intelligent transportation systems, vol. 10, no. 3,
pp. 512–522, 2009.

[28] L. Li, Y. Li, and Z. Li, “Efficient missing data imputing for traffic
flow by considering temporal and spatial dependence,” Transporta-
tion research part C: emerging technologies, vol. 34, pp. 108–120, 2013.

[29] M. T. Asif, N. Mitrovic, J. Dauwels, and P. Jaillet, “Matrix and
tensor based methods for missing data estimation in large traffic
networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 7, pp. 1816–1825, 2016.

[30] W. Ruan, P. Xu, Q. Z. Sheng, N. J. Falkner, X. Li, and W. E. Zhang,
“Recovering missing values from corrupted spatio-temporal sen-
sory data via robust low-rank tensor completion,” in International
Conference on Database Systems for Advanced Applications. Springer,
2017, pp. 607–622.

[31] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a
path using sparse trajectories,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 25–34.

[32] M. Culp and G. Michailidis, “Graph-based semisupervised learn-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 1, pp. 174–179, 2008.

[33] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learn-
ing using gaussian fields and harmonic functions,” in Proceedings
of the 20th International conference on Machine learning (ICML-03),
2003, pp. 912–919.

[34] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” in Advances in neural
information processing systems, 2004, pp. 321–328.

[35] A. Argyriou, M. Herbster, and M. Pontil, “Combining graph
laplacians for semi–supervised learning,” in Advances in Neural
Information Processing Systems, 2006, pp. 67–74.

[36] Y. Yamaguchi, C. Faloutsos, and H. Kitagawa, “Omni-prop: Seam-
less node classification on arbitrary label correlation.” in AAAI,
2015, pp. 3122–3128.

[37] J. Kwon, P. Varaiya, and A. Skabardonis, “Estimation of truck
traffic volume from single loop detectors with lane-to-lane speed
correlation,” Transportation Research Record: Journal of the Trans-
portation Research Board, no. 1856, pp. 106–117, 2003.

[38] D. Wilkie, J. Sewall, and M. Lin, “Flow reconstruction for data-
driven traffic animation,” ACM Transactions on Graphics (TOG),
vol. 32, no. 4, p. 89, 2013.

[39] X. Zhan, R. Li, and S. V. Ukkusuri, “Lane-based real-time queue
length estimation using license plate recognition data,” Transporta-
tion Research Part C: Emerging Technologies, vol. 57, pp. 85–102, 2015.

[40] X. Tang, B. Gong, Y. Yu, H. Yao, Y. Li, H. Xie, and X. Wang, “Joint
modeling of dense and incomplete trajectories for citywide traffic
volume inference,” in The World Wide Web Conference. ACM, 2019,
pp. 1806–1817.

[41] G. S. Thakurzx, P. Huiz, and A. Helmyx, “Modeling and character-
ization of urban vehicular mobility using web cameras,” in 2012
Proceedings IEEE INFOCOM Workshops. IEEE, 2012, pp. 262–267.

[42] D. Kumar, H. Wu, S. Rajasegarar, C. Leckie, S. Krishnaswamy, and
M. Palaniswami, “Fast and scalable big data trajectory clustering
for understanding urban mobility,” IEEE Transactions on Intelligent
Transportation Systems, no. 99, pp. 1–14, 2018.

[43] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing uncertainty of
low-sampling-rate trajectories,” in Data Engineering (ICDE), 2012
IEEE 28th International Conference on. IEEE, 2012, pp. 1144–1155.

[44] P. Banerjee, S. Ranu, and S. Raghavan, “Inferring uncertain tra-
jectories from partial observations,” in Data Mining (ICDM), 2014
IEEE International Conference on. IEEE, 2014, pp. 30–39.

[45] N. Yang and P. S. Yu, “Efficient hidden trajectory reconstruction
from sparse data,” in Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. ACM, 2016,
pp. 821–830.

[46] “Openstreetmap:,” https://www.openstreetmap.org/, 2017.

[47] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 785–794.

Yanwei Yu (S’12-M’16) received his Ph.D. de-
gree in Computer Science from University of
Science and Technology Beijing, China in 2014.
From 2016 to 2018, he was a postdoctoral re-
searcher at the College of Information Sciences
and Technology, Pennsylvania State University.
He is currently an associate professor at the
Department of Computer Science and Technol-
ogy, Ocean University of China. His research
interests include data mining, machine learning
and distributed computing.

Xianfeng Tang received his bachelor degree
from the School of Computer Science and Tech-
nology, University of Science and Technology of
China in 2016. He is currently a third-year Ph.D.
candidate at College of Information Science and
Technology, Pennsylvania State University. His
research interests include machine learning and
spatial-temporal data mining.

Huaxiu Yao received his bachelor degree from
the School of Electronic Science and Engineer-
ing at University of Electronic Science and Tech-
nology of China in 2016. He worked as re-
search intern at Didi Chuxing AI Labs in 2017
and Tencent AI Lab in 2018. He is currently a
second-year Ph.D. candidate at College of Infor-
mation Science and Technology, Pennsylvania
State University. His research spans across data
mining and machine learning.

Xiuwen Yi received his bachelor and Ph.D. de-
grees in computer science from the School of
Information Science and Technology, Southwest
Jiaotong University in 2013 and 2018, respec-
tively. He interned in Urban Computing Group,
Microsoft Research Asia from 2014 to 2017.
From 2017 to 2018, he was a visiting scholar at
the College of Information Sciences and Tech-
nology, Pennsylvania State University. He is cur-
rently a data scientist at JD Urban Computing
Business Unit. His research interests include ur-

ban computing and deep learning.

Zhenhui Li (M’12) received her Ph.D. degree
from the Department of Computer Science at
University of Illinois at Urbana-Champaign in
2012. Before that, she received her Bachelor
degree from Department of Computer Science
at Shanghai Jiao Tong University in 2007. She
interned at Microsoft Research at Silicon Valley
in 2011, Facebook at Palo Alto in 2009, Yahoo!
at Santa Clara in 2008 and Google China at
Beijing in 2006. She is currently an associate
professor with College of Information Sciences

and Technology of Pennsylvania State University. Her research interests
include data mining, machine learning and artificial intelligent.

