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ABSTRACT
Traffic signal control is essential for transportation efficiency in

road networks. It has been a challenging problem because of the

complexity in traffic dynamics. Conventional transportation re-

search suffers from the incompetency to adapt to dynamic traffic

situations. Recent studies propose to use reinforcement learning

(RL) to search for more efficient traffic signal plans. However, most

existing RL-based studies design the key elements - reward and state

- in a heuristic way. This results in highly sensitive performances

and a long learning process.

To avoid the heuristic design of RL elements, we propose to con-

nect RL with recent studies in transportation research. Our method

is inspired by the state-of-the-art method max pressure (MP) in the

transportation field. The reward design of our method is well sup-

ported by the theory in MP, which can be proved to be maximizing

the throughput of the traffic network, i.e., minimizing the overall

network travel time. We also show that our concise state represen-

tation can fully support the optimization of the proposed reward

function. Through comprehensive experiments, we demonstrate

that our method outperforms both conventional transportation

approaches and existing learning-based methods.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Con-
trol methods; • Applied computing→ Transportation.
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(a) Performance w.r.t. reward (b) Convergence w.r.t. state

Figure 1: Performance of RL approaches is sensitive to re-
ward and state. (a) A heuristic parameter tuning of reward
function could result in different performances. (b) The
methodwith amore complicated state (LIT [34]w/ neighbor)
has a longer learning time but does not necessarily converge
to a better result.

1 INTRODUCTION
Traffic signals coordinate the traffic movements at the intersection

and a smart traffic signal control algorithm is the key to transporta-

tion efficiency. Traffic signal control remains an active research

topic because of the high complexity of the problem. The traffic

situations are highly dynamic, thus require traffic signal plans to

be able to adjust to different situations.

Recently, people start to investigate reinforcement learning (RL)

techniques for traffic signal control. Several studies have shown the

superior performance of RL techniques over traditional transporta-

tion approaches [1, 2, 4, 25, 31, 32]. The biggest advantage of RL is

that it directly learns how to take the next actions by observing the

feedback from the environment after previous actions.

One major issue of current RL-based traffic signal control ap-

proaches is that the setting is often heuristic and lacks proper

theoretical justification from transportation literature. This often

results in highly sensitive performance w.r.t. the setting and leads

to a long learning process. We elaborate on this issue by examining

two fundamental elements in RL setting: reward and state.

First, various reward designs have been proposed in the litera-

ture. The reason is that travel time, the ultimate objective, is hard

to optimize directly. Travel time is a long-term reward depending

on a sequence of actions, thus the effect of one action can hardly be

reflected in terms of travel time. People thus choose short-term re-

wards like queue length or delay to approximate the travel time [30].

So the reward function is often defined as a weighted sum of these

terms [6, 9, 10, 25, 31]. However, as shown in Figure 1(a), tuning

the weights on these terms could lead to largely different results in

terms of travel time. Some literature [35] discusses how to define

the reward by connecting with the existing transportation method,

https://doi.org/10.1145/3292500.3330949
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Figure 2: Illustration of max pressure control in two cases.
In Case A, green signal is set in the North→South direction;
in Case B, green signal is set in the East→West direction.

but they only focus on controlling a single intersection. In this

paper, we focus on the multi-intersection control scenario.

Second, existing RL methods have a trend of using more com-

plicated state representation. Recent studies use visual images to

describe the full traffic situation at the intersection [25, 31], which

results in the dimension of the state in the scale of thousands. In

the single intersection scenario, [35] reveals that additional infor-

mation is not always helpful. Similar conclusions can also be found

in the multi-intersection scenario. As shown in Figure 1(b), com-

plicated state definitions increase the learning time and may not

necessarily bring significant gain. Note that we are not claiming

that additional information is always not helpful. The choice of the

state depends on the reward setting. Based on the reward design of

LIT [35], neighboring information is not necessary in the case we

show in Figure 1(b). The question is, could we justify theoretically

how much information is enough in state definition in order to

optimize the reward function?

The challenges we face in RL motivate us to look for support

from transportation. In transportation literature, max pressure (MP)

control is one of the state-of-the-arts in traffic signal control [16, 26].

The key idea of MP is to minimize the “pressure” of an intersection,

which can be loosely defined as the number of vehicles on incoming

lanes minus the number of vehicles on outgoing lanes. Figure 2

illustrates the concept of pressure. By setting the objective as mini-

mizing the pressure of intersections, MP is proved to maximize the

throughput of the whole road network
1
. However, the solution of

MP is greedy, which leads to locally optimal solutions.

Our proposed solution is based on RL but theoretically grounded

by MP method. The connection between RL and MP is that both

approaches can essentially be framed as an optimization problem.

In RL, long term reward is the objective for optimization and the

solution is derived from trial-and-error search. In MP, the objective

is to minimize pressure and the solution is derived from a greedy

algorithm. Intuitively, if we set our reward function the same as

the objective of MP, we can achieve the same result as MP. We first

prove that under the assumption of no physical queue expansion,

both ourmethod andMP aremaximizing throughput of the network.

We further show that ourmethod can relax the assumption on queue

expansion and the conclusion still holds.

1
Maximizing throughput equals to minimizing travel time under certain conditions

and minimizing travel time is the final goal for most traffic signal control problems.

To further address the challenge on state design, we describe

the system dynamics using the state features based on MP. MP

provides evolution equations to formulate the state transition of the

traffic as a Markov chain [28]. In RL, the Markov decision process

formally describes the dynamics of an environment. By including

the variables from the evolution equation into state definition in

RL, the state is a sufficient statistic for the system dynamics.

We conduct comprehensive experiments using both synthetic

data and real data. We test our method in different traffic flow

and network structure scenarios. We demonstrate the power of RL

methods over traditional transportation approaches as RL optimizes

the objective through trial and error. Our method also consistently

outperforms state-of-the-art RL methods, which shows that theo-

retically supported reward design is necessary and the concise state

design leads to an efficient learning process. We further discuss

several interesting policies learned by our method to show that our

method can achieve coordination along arterial.

2 RELATEDWORK
Individual Traffic Signal Control. Individual traffic signal con-

trol has been investigated extensively in the field of transporta-

tion, which tries to optimize the travel time or delay of vehicles [5,

11, 12, 15, 23], assuming that vehicles are arriving and moving in

a specific pattern. Recently, reinforcement learning based meth-

ods attempt to address this problem by directly learning from the

data [18, 32]. Earlier work using tabular Q-learning [3, 9] can only

deal with discrete state representations. Recent work using deep

RL [7, 14, 20, 25, 31, 34] can cope with more complex continuous

state representation. [35] noticed that it is not always true that

the more complex the state definitions are, the better the perfor-

mance will be. In [35], they also investigated the proper reward

design grounded by the individual intersection control method in

transportation field. In this paper, we are focusing on the multi-

intersection scenario.

ConventionalMulti-intersectionTraffic SignalControl. In con-
ventional multi-intersection control, coordination can be achieved

by setting a fixed offset (i.e., the time interval between the begin-

nings of green lights) among all intersections along an arterial [24].

In fact, it is not an easy task, given traffic of opposite directions

usually cannot be facilitated simultaneously. To solve this problem,

some optimization-based methods [17, 21] are developed to min-

imize vehicle travel time and/or the number of stops at multiple

intersections. Instead of optimizing offsets, max pressure [26, 28]

aims to maximize the throughput of the network so as to mini-

mizing the travel time. However, these approaches still rely on

assumptions to simplify the traffic condition and do not guarantee

optimal results in the real world.

RL-based Multi-intersection Traffic Signal Control. Since re-
cent advances in RL improve the performance on isolated traffic

signal control [31, 35], efforts have been made to design strategies

that control multiple intersections. One way is to consider jointly

modeling the action between learning agents with centralized opti-

mization [13, 25]. Since these methods [13, 25] need to negotiate

between the agents in the whole network, they are computationally

expensive. Another way is to use decentralized RL agents to control

the traffic signals in the multi-intersection system [4, 8, 10]. Since

each agent makes its own decision based on the information from



itself and neighboring intersections without centralized decision,

decentralized methods may be more scalable and practicable. By

plugging new intersection controllers into the system, the decen-

tralized systems are easy to scale. Our proposedmethod also follows

this direction.

We notice the recent trend to vary the definition of state and

reward in RL for traffic signal control. Readers interested in the

detailed comparison of the state and reward definitions can refer

to [30]. We are the first RL method that is theoretically grounded by

traditional transportation methods to coordinate the traffic signals

along an arterial.

3 PRELIMINARIES
Definition 3.1 (Incoming lane and outgoing lane of an intersection).

An incoming lane for an intersection is a lane where the traffic

enters the intersection. An outgoing lane for an intersection is a

lane where the traffic leaves the intersection. We denote the set of

incoming lanes and outgoing lanes of an intersection as Lin and

Lout respectively.
Definition 3.2 (Traffic movement). A traffic movement is defined

as the traffic traveling across an intersection from one incoming

lane to an outgoing lane. We denote a traffic movement from lane l
to lanem as (l ,m).

Definition 3.3 (Movement signal and phase). A movement signal

is defined on the traffic movement, with green signal indicating the

corresponding movement is allowed and red signal indicating the

movement is prohibited. We denote a movement signal as a(l ,m),

where a(l ,m) = 1 indicates the green light is on for movement

(l ,m), and a(l ,m) = 0 indicates the red light is on for movement

(l ,m). A phase is a combination of movement signals. We denote a

phase as p = {(l ,m)|a(l ,m) = 1}, where l ∈ Lin andm ∈ Lout .

In Figure 3, there are twelve incoming lanes and twelve outgoing

lanes in the intersection. Eight movement signals (red and green

dots around the intersection) comprise four phases to control the
traffic movements for the intersection:WE-Straight (Going Straight
from West and East), SN-Straight (Going Straight from South and

North), WE-Left (Turning Left from West and East), SN-Left (Turn-
ing Left from South and North). Specifically, WE-Left allows two
traffic movements. When phase #2 is activated, the traffic from lE
and lW is allowed to turn left to corresponding outgoing lanes.

Definition 3.4 (Pressure ofmovement, pressure of intersection). The
pressure of a movement is defined as the difference of vehicle den-

sity between the incoming lane and the outgoing lane. The vehicle

density of a lane is defined as x(l)/xmax (l), where x(l) is the number

of vehicles on lane l , xmax (l) is the maximum permissible vehicle

number on l . We denote the pressure of movement (l ,m) as

w(l ,m) =
x(l)

xmax (l)
−

x(m)

xmax (m)
(1)

If all the lanes have the same maximum capacity xmax , thenw(l ,m)

is simply indicating the difference between the incoming and outgo-
ing number of vehicles.

The pressure of an intersection i is defined as the sum of the

absolute pressures over all traffic movements, denoted as:

Pi = |
∑

(l,m)∈i

w(l ,m) | (2)

Figure 3: Phase and traffic movements in traffic signal con-
trol problem. Phase #2 is set in the example.

In Figure 2, the pressure of the intersection in Case A is |3+1| = 4,

whereas the pressure of intersection in Case B is | − 2 + 1| = 1.

In general, the pressure Pi indicates the degree of disequilibrium
between the incoming and outgoing vehicle density. The larger Pi
is, the more unbalanced the distribution of vehicles is.

Problem 1 (Multi-intersection traffic signal control). In our prob-

lem, each intersection is controlled by an RL agent. At each time

step t , agent i observes from the environment as its state oti . Given
the vehicle distribution and current traffic signal phase, the goal of

the agent is to give the optimal action a (i.e., which phase to set),

so that the reward r (i.e., the average travel time of all vehicles) can

be maximized.

4 METHOD
4.1 Agent Design
First, we introduce the state, action and reward design for an agent

that controls an intersection.

• State (Observation). Our state is defined for one intersection,
which equals to the definition of observation in multi-agent RL.

It includes the current phase p, the number of vehicles on each

outgoing lane x(m) (m ∈ Lout ), and the number of vehicles on each

segment of every incoming lane x(l)k (l ∈ Lin , k = 1 . . .K ). In this

paper, each lane is evenly divided into 3 segments (K = 3), and we

denote the segment on lane l nearest to the intersection as the first

segment x(l)1.
• Action. At time t , each agent chooses a phase p as its action

at from action setAAA, indicating the traffic signal should be set to

phase p. In this paper, each agent has four permissible actions,

correspondingly four phases in Figure 3. Each action candidate ai
is represented as a one-hot vector. Note that in the real world the

signal phases may organize in a cyclic way, while our action makes

the traffic signal plan more flexible. Also, there may be different

number of phases in the real world and four phases is not a must.

• Reward. We define the reward ri as

ri = −Pi , (3)

where Pi is the pressure of intersection i , as defined in Equation (2).
Intuitively, the pressure Pi indicates the degree of disequilib-

rium between vehicle density on the incoming and outgoing lanes.

By minimizing Pi , the vehicles within the system can be evenly

distributed. Then the green light is effectively utilized so that the

throughput is optimized.



4.2 Learning Process
In this paper, we adopt Deep Q-Network (DQN) as function approx-

imator to estimate the Q-value function. To stabilize the training

process, we maintain an experience replay memory as described

in [19] by adding the new data samples in and removing the old

samples occasionally. Periodically, the agent will take samples from

the memory and use them to update the network.

5 JUSTIFICATION OF RL AGENT
To theoretically support the efficacy of our proposed method, we

justify our reward and state design by showing that, in a simplified

transportation system, the states we use can fully describe the

system dynamics, and using Equation (3) as reward function in

RL is equivalent to optimizing travel time as in the transportation

methods. Some important notation is summarized in Table 1.

Table 1: Summary of notation.

Notation Meaning

Lin set of incoming lanes for an intersection

Lout set of outgoing lanes for an intersection

(l ,m) a traffic movement from lane l tom
x(l ,m) number of vehicles leaving l and enteringm
x(l) number of vehicles on lane l
x(l)k number of vehicles on k-th segment of l

xmax (m) maximum permissible vehicle number on lanem
r (l ,m) turning ratio of traffic movements from l tom
c(l ,m) discharging rate of movement (l ,m)

a(l ,m)
1 if the green light is on for movement (l ,m),

0 otherwise

5.1 Justification for State Design
5.1.1 General description of traffic movement process as a Markov
chain. Consider the arterial scenario described in Example 5.1.

x(k, l)(t)

a(k, l)(t) = 1
c(k, l)

x(l,m0)(t)

x(l,m)(t)

x(l,m00)(t)

x(m, p)(t + 1)

a(l,m)(t) = 1
c(l,m)

lane llane k lane m

r(l,m)(t)

period t period t+1

Figure 4: The transition of traffic movements.

Example 5.1. Figure 4 associates a distinct traffic movement with

each incoming lane l ∈ Lin and eachm ∈ Outl , where Outl is the
set of lanes output from lane l . Follow the notation from [28], let

x(l ,m)(t) be the associated number of vehicles at beginning of

period t , X (t) = {x(l ,m)(t)} is the state of the movement network,

which we regard as states ot in accordance with Section 4.1. There

are two variables which are considered independent of X (t):
• Turning ratio r (l ,m): r (l ,m) is an i.i.d. random variable indi-

cating the proportion of vehicles entering m from l to the total

vehicles on l .

• Discharging rate c(l ,m): For each (l ,m), the queue discharging

rate c(l ,m) is a non-negative, bounded, i.i.d. random variable, i.e.,

c(l ,m) ≤ C(l ,m), where C(l ,m) is the saturation flow rate.

At the end of each period t , an action At = {(l ,m)|at (l ,m)}

must be selected from the action set AAAt as a function of X t
for

use in period (t + 1), indicating the agent will give green light for

movements from l tom, see the bottom of Figure 4.

The evolution equations of X (t) are developed in [26]. For each

(l ,m) and t , the evolution of x(l ,m) consists of receiving and dis-

charging, and is captured by the following equation:

x(l ,m)(t + 1)

= x(l ,m)(t) + Σk ∈Inlmin[c(k, l) · a(k, l)(t), x(k, l)(t)] · r (l ,m)︸                                                         ︷︷                                                         ︸
r eceivinд vehicles

− min{c(l ,m) · a(l ,m)(t), x(l ,m)(t)} · 1(x(m) ≤ xmax (m))︸                                                                     ︷︷                                                                     ︸
discharдinд vehicles

,

(4)

where Inl represents the set of lanes input to l . For the second term
in Equation (4), when l is the receiving lane, up to x(k, l) vehicles
will move from k if a(k, l)(t) = 1 and they will join (l ,m) if r (l ,m) =

1 For the third term in Equation (4), when traffic movement (l ,m) is

actuated, i.e., a(l ,m)(t) = 1, up to x(l ,m) vehicles will leave l and be
routed tom if there is no blockage on lanem, i.e., x(m) ≤ xmax (m),

where xmax (m) is the maximum permissible vehicle number on

lanem.

Suppose the initial state X (1) = x(l ,m)(1) is a bounded random

variable. Since A(t) = a(l ,m)(t) is a function of the current state

X (t), and c(l ,m) and r (l ,m) are all independent ofX (1), ...,X (t), the
process X (t) is aMarkov chain. The transition probabilities of the

chain depend on the control policy.

5.1.2 Specification with proposed state definition. We can modify

the traffic movement equation from lane-level to segment-level. We

denote x(l)1 as the number of vehicles on the segment l1 closest to
the intersection and x(l)2 as the number of vehicles on the second

closest segment, which is connected with l1. Assume the vehicles

change lanes for routing by the time it enters the lane l , i.e., x(l ,m) =

x(l), and all vehicles on li+1 enter next segment li during time t , then
the movement process on the segment closest to the intersection

can be written as:

x(l)1(t + 1) = x(l)1(t) + x(l)2(t)

−min{c(l ,m) · a(l ,m)(t), x(l)1(t)} · 1(x(m) ≤ xmax (m)).
(5)

Equations for other segments can be derived in a similar way.

With the lane and segment movement evolution equations de-

scribed above, the evolution of an individual intersection could

be obtained, which is a combination of the equations of all the

lanes involved. For a single intersection i , c(l ,m) is a constant phys-

ical feature of each movement, whereas x(l)1, x(l)2, and x(m) are

provided to the RL agent in our state definition. Hence, our state

definition can fully describe the dynamics of the system.

5.2 Justification for Reward Design
5.2.1 Stabilization on traffic movements with proposed reward. In-
spired by [26], we first relax its assumption on physical queue



expansion in the arterial. Then the goal of our RL agents is proven

to stabilize the queue length, thus maximizes the system throughput

and minimizes the travel time of vehicles.

Definition 5.2 (Movement process stability). The movement pro-

cess X (t) = {x(l ,m)(t)} is stable in the mean (and u is a stabilizing

control policy) if for someM < ∞, the following holds:

T∑
t=1

∑
(l,m)

E[x(l ,m)(t)] < M, ∀T (6)

where E denotes expectation. Movement stability in the mean im-

plies that the chain is positive recurrent and has a unique steady-

state probability distribution for all T .

Definition 5.3 (Max-pressure control policy [26]). At each period

t , the agent selects the action with maximum pressure at every

state X : Ã∗(X ) = argmaxÃ∈AAA θ (Ã,X ), where the pressure of Ã is

defined as

θ (Ã,X ) =
∑

(l,m):a(l,m)=1

w̃(l ,m),

and w̃(l ,m) = x(l) − x(m) is the pressure of each movement. In this

paper, we use the tilde symbol for max-pressure policy, i.e., Ã, in
order to differentiate it from a RL policy.

Theorem 5.4. Without considering the physical queue expansion2,
action Ã∗ selected by max-pressure control policy and action A∗ se-
lected by our RL policy are both stabilizing the system, whenever the
average demand is admissible3.

Proof. Formax-pressure control policy, Theorem 1 in [26] shows

that given a time period t = 1, . . . ,T there existsm < ∞ and ϵ > 0

such that under Ã∗
: ϵ · 1

T
∑T
t=1 E[X (t)] ≤ m + 1

T · E[X (1)]2, where

X (1) denotes the state when t = 1.

For an optimal RL control policy, the agent selects the action A
with optimal Q(A,X ) at every state X :

A∗(X ) = argmax

A∈AAA
Q(A,X ). (7)

whereQt (A,X ) = E[rt+1 +γrt+2 + . . . |A,X ] denotes the maximum

total reward at state X by taking A at time t (in Equation (7), we

neglect time t for simplicity). The difference between the pressure

definition in RL reward and max-pressure is that our RL agent uses

the weighted pressure considering maximum permissible vehicle

number xmax in Equation (1). If we assume the lanes are in the

same lenth xmax (l), the stability result still holds for the normalized

x(l). □

Theorem 5.5. Considering the physical queue expansion in the
arterial environment, action A∗ selected by our RL policy is also sta-
bilizing the movement.

Different from [26], we now establish the proof of Theorem 5.5,

which removes the assumption of no physical queue expansion in

the arterial environment. In the arterial environment:

2
“Without physical queue expansion” means the vehicles will be considered to have

no physical length in a queue.

3
Intuitively, an admissible demand means the traffic demand can be accommodated by

traffic signal control strategies, not including situations like long-lasting over-saturated

traffic that requires perimeter control to stop traffic from getting in the system.

• The maximum permissible vehicle number xmax on side street

lane mside
is assumed to be infinite, hence the second term in

Equation (1) is zero. Thus we havew(l ,mside ) =
x (l )

xmax (l )
> 0.

• When the outgoing lanemmain
along the arterial is saturated,

the second term in Equation (1) is approximately 1 because of the

queue expansion. Thusw(l ,mmain ) ≈
x (l )

xmax (l )
− 1 < 0.

This means when we consider the physical queue expansion

in the arterial, w(l ,mside ) > w(l ,mmain ), the control policy will

restrict the queue spillback since it prohibits more vehicles to rush

into the downstream intersection and block the movements of

vehicles in other phases. Accordingly,M in Equation (6) can now

be set toM ≤
∑T
t=1

∑
(l,m) xmax (m).

5.2.2 Connection to throughput maximization and travel time min-
imization. Given that the traffic movement process of each inter-

section is stable, the system is accordingly stable. In an arterial

environment without U-turn, vehicles that move from lanem to l
would not move from l tom again, i.e., between x(m, l) and x(l ,m)

only one of them can exist under arterial network. Then the actions

that RL agents take will not form gridlock or block the network,

thus can efficiently utilize the green time. Within the given time

period T , our RL agent can provide the maximum throughput, thus

minimize the travel time of all vehicles within the system.

6 EXPERIMENT
We conduct experiments on CityFlow

4
, an open-source traffic sim-

ulator that supports large-scale traffic signal control [33]. After the

traffic data being fed into the simulator, a vehicle moves towards its

destination according to the setting of the environment. The simu-

lator provides the state to the signal control method and executes

the traffic signal actions from the control method.
5

6.1 Dataset Description
Both synthetic and real-world traffic flow data are used in our

experiments. In a traffic dataset, each vehicle is described as (o, t ,d),
where o is origin location, t is time, and d is destination location.

Locations o and d are both locations on the road network. Traffic

data is taken as input for the simulator. All the data contains bi-

directional and dynamic flows with turning traffic.

• Synthetic data. Four different configurations are tested as de-
tailed in Table 2. This data is synthesized from a statistical analysis

of real-world traffic patterns in Jinan and Hangzhou.

• Real-world data. We collect six representative traffic flow

data from three cities to evaluate the performance of our model:

Beaver Avenue in State College, USA; Qingdao Road in Jinan, China;

four avenues in Manhattan, New York City, USA. Figure 5 shows the

aerial view on these arterials. Detailed statistics of these datasets

are listed in Table 3.

6.2 Experimental Settings
6.2.1 Environmental settings. Different road networks are config-

ured. Besides a six-intersection arterial on which we primarily

4
http://cityflow-project.github.io

5
Codes, public datasets and their preprocessing and statistical details can be found at:

https://github.com/wingsweihua/presslight.

More datasets can be found at: http://traffic-signal-control.github.io



Figure 5: Real-world arterial network for the experiment.

experiment, arterials with larger scale and heterogeneous intersec-

tions (in Figure 7) are also tested.

The free-flow speed on the road segments is set to 40 kilome-

ters/hour. Vehicles can always turn right when there is no conflict-

ing traffic. Every time the phase switches, a 5-second combined

yellow and all-red time are followed to clear the intersection.

Table 2: Configurations for synthetic traffic data

Config

Demand

pattern

Arrival rate

(vehicles/h/road)

Volume

1. Light-Flat Flat Arterial : 600

Side-street: 180

(Light)

2. Light-Peak Peak

3. Heavy-Flat Flat Arterial: 1400

Side-street : 420

(Heavy)

4. Heavy-Peak Peak

6.2.2 Evaluation metric. Following existing studies [31], we use

the average travel time in seconds to evaluate the performance.

The average travel time of all vehicles is the most frequently used

measure in the transportation field [22], which is calculated as the

average travel time of all vehicles spent in the system.

6.2.3 Compared methods. We compare our model with the fol-

lowing two categories of methods: transportation methods and RL

methods. Note that all methods are carefully tuned and their best

results are reported (except the offsets of FixedTime because of its
random nature).

Conventional transportation baselines:
• FixedTime: Fixed-time with random offset [22]. Each phase

has a fixed time of 15 seconds. For uni-directional traffic, there are

only 2 phases (WE-straight, SN-straight). For traffic with turning

vehicles, there are 4 phases.

• GreenWave [22]: This is the most classical method in trans-

portation field to implement coordination that gives an optimal

solution for unidirectional and uniform traffic on the arterial. It

requires that all intersections share the same cycle length, which is

the minimum value of the cycle length for individual intersections

Table 3: Data statistics of real-world traffic dataset

Dataset

Arrival rate (vehicles/h) # of inter-

sectionsMean Std Max Min

Qingdao Rd., Jinan 3338.83 221.58 2748 3864 3

Beaver Ave.,

State College

2982.33 359.70 2724 3491 5

8-th Ave., NYC 6790.04 32.34 4968 7536 16

9-th Ave., NYC 4513.06 25.88 4416 6708 16

10-th Ave., NYC 6083.90 25.61 2892 5016 16

11-th Ave., NYC 4030.79 24.08 2472 4536 16

calculated using Webster’s theory [29]. The phase split percentage

equals to the percentage between the demand of a designated phase

and total demand. Offsets between intersections are equivalent to

the free-flow travel time between two consecutive intersections.

• MaxPressure: Max pressure control [27] is a state-of-the-

art network-level traffic signal control method, which greedily

chooses the phase with the maximum pressure, as introduced in

Definition 5.3.

RL baselines:
• LIT is an individual deep reinforcement learning approach

proposed in [35]. Thismethod does not consider the traffic condition

on downstream lanes in state and uses a reward with queue length.

• GRL is a coordinated reinforcement learning approach for

multi-intersection control [25]. Specifically, the coordination is to

design a coordination graph and to learn the joint local Q-function

on two adjacent intersections directly.

6.3 Performance Comparison
Table 4 reports our experimental results using synthetic data under

six-intersection arterial and real-world data w.r.t. average travel
time. We have the following findings:

(1) Conventional transportation methods (FixedTime, Green-
Wave andMaxPressure) give poor performance. This is because the

traffic in these settings is dynamic. Conventional methods, which



Table 4: Performance comparison between all the methods in the arterial with 6 intersections w.r.t. average travel time (the
lower the better). Top-down: conventional transportation methods, learning methods, and our proposed method.

Synthetic traffic Real-world traffic

LightFlat LightPeak HeavyFlat HeavyPeak

Qingdao Rd.,

Jinan

Beaver Ave.,

State College

8th Ave.,

NYC

9th Ave.,

NYC

10th Ave.,

NYC

11th Ave.,

NYC

FixedTime 93.29 109.50 325.48 246.25 317.40 336.29 432.60 469.54 347.05 368.84

GreenWave 98.39 124.09 263.36 286.85 370.30 332.06 451.98 502.30 317.02 314.08

MaxPressure 74.30 82.37 262.26 225.60 567.06 222.90 412.58 370.61 392.77 224.54

GRL 123.02 115.85 525.64 757.73 238.19 455.42 704.98 669.69 676.19 548.34

LIT 65.07 66.77 233.17 258.33 58.18 338.52 471.30 726.04 309.95 340.40

PressLight 59.96 61.34 160.48 184.51 54.87 92.00 223.36 149.01 161.21 140.82

Table 5: Detailed comparison of our proposed state and re-
ward design and their effectsw.r.t. average travel time (lower
the better) under synthetic traffic data.

HeavyFlat HeavyPeak

LIT 233.17 258.33

LIT+out 201.56 281.21

LIT+out+seg 200.28 196.34

PressLight 160.48 184.51

rely heavily on over-simplified assumptions or prior knowledge on

the traffic, may easily fail under the dynamic traffic scenarios.

(2) Our method PressLight outperforms all other RL methods.

Though all the methods aim to learn to minimize the travel time,

our reward design is proven to directly optimize towards it, while

GRL and LIT are using mixed reward which may distract the model

from learning efficiently.

(3) When the traffic grows larger (Config 3,4 to 1,2), PressLight
becomes much better than other baselines. Under heavy traffic, a

poor control strategy would make downstream queue may easily

spill back and the green time would be wasted. The reward design

of our agents considers balancing the queues on all the intersections

within the arterial, which makes the performance even superior as

the traffic becomes larger.

6.4 Study of PressLight
6.4.1 Effects of variants of our proposed method. We consider sev-

eral variations of our model as follows.

• LIT. Instead of using the distribution of the vehicles, LIT sim-

ply uses phase and number of vehicles on each incoming lanes as

its state (similar to LIT), and uses the reward defined same as LIT.
This serves as a base model for later variants.

• LIT+out. Based on LIT, LIT+out adds the number of vehicles

on outgoing lanes to its state, which has more information about

its downstream intersections than LIT agents.

• LIT+out+seg. Based on LIT+out, LIT+out+seg uses the phase,

the number of segments’ vehicles on both incoming and outgo-

ing lanes into its state, which is the same as our proposed state

definition.

• PressLight. Our proposed method which further changes

LIT+out+seg’s reward to pressure.

Table 5 shows the performance of variants of our method:

Figure 6: Convergence curve of average duration and our
reward design (pressure). Pressure shows the same conver-
gence trend with travel time.

(1) Giving the added state information (LIT+out and LIT+out+seg)
boosts the performance. This makes sense since (1) LIT+out is able
to observe traffic condition on outgoing lanes and helps to bal-

ance the queues for each intersection when there is congestion on

outgoing lanes; (2) LIT+out+seg has the information about vehicle

distributions which is the key factor for agents to learn the offsets.

(2) PressLight further outperforms LIT+out+seg owing to its

reward definition. Instead of optimizing a reward that is not directly

towards the travel time under arterial network, our reward design is

proved to be a surrogate of average travel time. This demonstrates

the effectiveness of our proposed reward design.

6.4.2 Average travel time related to pressure. Figure 6 illustrates the
convergence curve of our agents learning process w.r.t. the average

reward and the average pressure of each round. We can see that

the travel time is closely correlated with pressure.

6.5 Performance on Mixed Scenarios
6.5.1 Heterogeneous intersections. We employ our model to two

heterogeneous arterials, as is shown in Figure 7. For intersections

with 3 legs, we use zero-padding to complete the state. For inter-

sections with different lengths of lanes, our method can handle

this well since the state is independent of the lane length. Table 6

illustrates the performance of our model againstMaxPressure.
6.5.2 Arterials with a different number of intersections and network.
We employ our model to arterials with 6, 10 and 20 intersections un-

der synthetic data. As is shown in Table 6, our model could achieve

better performance over conventional transportation method Max-
Pressure and reinforcement learning method LIT even when the

number of intersections grows.

We also test our model a network with 9 intersections (3 × 3

grid). Table 6 shows the experiment results and we can see that

PressLight can outperform MaxPressure and LIT under both traffic.



Table 6: Average travel time of different methods under arterials with a different number of intersections and network.

6-intersection arterial 10-intersection arterial 20-intersection arterial Grid network

HeavyFlat HeavyPeak HeavyFlat HeavyPeak HeavyFlat HeavyPeak HeavyFlat HeavyPeak

MaxPressure 262.26 225.60 129.63 129.63 310.95 271.39 539.67 485.03

LIT 233.17 258.33 157.84 200.96 246.88 202.30 283.21 332.53

PressLight (ours) 160.48 184.51 88.88 79.61 155.84 188.92 251.02 262.46

Figure 7: Average travel time of our method on heteroge-
neous intersections. (a) Different number of legs. (b) Differ-
ent length of lanes. (c) Experiment results.

Figure 8: Performance comparison under uniform uni-
directional traffic, where the optimal solution is known
(GreenWave). Only PressLight can achieve the optimal.

6.6 Case Study
Another desirable property of PressLight is its ability to auto-

matically coordinate the offset between adjacent intersections. To

demonstrate this, we show two examples. Under simplified uniform

traffic, we show that our model has learned the optimal solution

which could be justified by transportation theories. Under the real-

world traffic, the learned offset is visualized to reveal this property.

6.6.1 Synthetic traffic on the uniform, uni-directional flow. In this

section, we perform experiments on the arterials with six homoge-

neous intersections under two traffic settings. One is for light traffic

(arterial demand: 300 vehicle/hour/lane, side-street demand: 180

vehicle/hour/lane) and one is for heavy traffic (arterial demand: 700

vehicle/hour/lane, side-street demand: 420 vehicle/hour/lane). Both

of them are uniform and uni-directional without turning traffic and

two phases (WE for green light on arterial and SN for green light

for side streets) are used for all intersections. Under these simplified

scenarios, the optimal solution is known as GreenWave in trans-

portation area as stated in [22]. As the optimal solution under these

settings, GreenWave’s policy includes the offsets between intersec-

tions and the phase split, which requires several prior knowledge

to calculate them: The offset ∆ equals to the block length l between
two consecutive intersections divided by free-flow speed v; the
optimal phase split ratio is equal to the ratio of the demand for a

designated phase and total demand. In our experiments, l ≈ 300 m,

Figure 9: Offsets between intersections learnt by RL
agents under uni-directional uniform traffic (700 vehi-
cles/hour/lane on arterial)

Figure 10: Space-time diagram with signal timing plan to il-
lustrate the learned coordination strategy from real-world
data on the arterial of QingdaoRoad in themorning (around
8:30 a.m.) on August 6th.

v ≈ 10 m/s, hence, the optimal offset should be ∆ ≈ 30 s, and the

optimal phase split should be 1:0.6 (WE: SN ).

Performance comparison. We compared PressLightwith all afore-
mentioned baselines and report their results in Figure 8. We can

find that givenGreenWave is the optimal solution, only our method

PressLight achieves the same performance as GreenWave in both

settings. This demonstrates that our RL agents can learn the optimal

policy under these simplified scenarios.

Policy learned by RL agents. We use time-space diagrams to show

the trajectories of vehicles and phase plans of traffic signal con-

trollers. In a time-space diagram like Figure 9, the x-axis is the time

and the y-axis is the distance (from a reference point, here we use

the westernmost point as the reference point). As it is shown in

Figure 9, there are six bands with green-yellow-red colors indicat-

ing the changing phases of six intersections. The black line with

an arrow is the trajectory of a vehicle, where the x-axis tells the

time and the y-axis tells the location. Vehicles that travel within

the green dashed area will experience a green wave. For example,

vehicle A enters the system at 2850 second and traveled through 5

intersections at 3000 second, experiencing consecutive green lights

during its trip. The slope indicates the speed of the vehicle.

We have several observations: (1) PressLight can learn the opti-

mal phase split as GreenWave. As is shown in Figure 9, our method

learns optimal phase split (approximately 1:0.6, with 25 seconds of



WE, 15 seconds of SN , and 10 seconds of yellow light). (2) PressLight
can learn the optimal offset and form a green wave. In Figure 9, the

offset is approximately 30s between two consecutive traffic signals

and a green wave can be seen (dashed green area in Figure 9). This

demonstrates that our RLmethod can learn the optimal policy given

by GreenWave.

6.6.2 Real-world traffic in Jinan. In this section, we make observa-

tions on the policies we learned from the real data for the arterial of

Qingdao Road (East andWest direction) during the morning peak

hour (around 8:30 a.m.) on August 6th. In Figure 10, a time-space

diagram is drawn with time on the horizontal axis and distance

(from a reference point, here we use the westernmost point on the

arterial as the reference point) on the vertical axis. Most of the

blue and orange lines are straight, indicating most vehicles on the

arterial are not stopped by red lights, which means our method can

automatically form a green wave.

7 CONCLUSION
In this paper, we propose a novel RL method for multi-intersection

traffic signal control on the arterials. We conduct extensive experi-

ments using both synthetic and real data and demonstrate the su-

perior performance of our method over the state-of-the-art. Specif-

ically, we draw a connection on the design between reinforcement

learning with conventional transportation control methods. It is

also the first time the individual RL model automatically achieves

coordination along arterial without any prior knowledge.

We acknowledge the limitations of our model and would like

to point out several future directions. In our experiment, we did

not model the behavior of vehicles. The behavior of vehicles (e.g.,

routing) in the real-world may change dynamically in response to

traffic lights. Another direction can be reducing the cost of learn-

ing. Since RL is learning from trial-and-error, deploying an online

updated RL model in real-world could be dangerous and costly.
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