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ABSTRACT

Increasing urbanization across the globe has coincided with greater
access to urban data; this enables researchers and city administra-
tors with better tools to understand urban dynamics, such as crime,
traffic, and living standards. In this paper, we study the Learning an
Embedding Space for Regions (LESR) problem, wherein we aim to
produce vector representations of discrete regions. Recent studies
have shown that embedding geospatial regions in a latent vector
space can be useful in a variety of urban computing tasks. However,
previous studies do not consider regions across multiple modalities
in an end-to-end framework. We argue that doing so facilitates
the learning of greater semantic relationships among regions. We
propose a novel method, RegionEncoder, that jointly learns region
representations from satellite image, point-of-interest, human mo-
bility, and spatial graph data. We demonstrate that these region
embeddings are useful as features in two regression tasks and across
two distinct urban environments. Additionally, we perform an ab-
lation study that evaluates each major architectural component.
Finally, we qualitatively explore the learned embedding space, and
show that semantic relationships are discovered across modalities.
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1 INTRODUCTION

As global urbanization continues to rise, so too does the prolifera-
tion of data collected in urban environments. Many cities across
the world are collecting and releasing data to the public in an effort
to increase urban efficiency and better administer to their citizens.
City governments are using diverse data sets to control traffic [28]
[22], predict crime [25], and monitor pollution [29]. While these
data sets are often large, many spatial data sets have sparse natu-
ral representations, which suffer from the curse of dimensionality.
High-dimensional feature spaces exponentially increase the need
for labelled data, and make models difficult to estimate [24].

In the current work, we study the problem known in the litera-
ture as Learning an Embedding Space for Regions (LESR) [7]. LESR
refers to the study of methods that project spatial regions into a
lower-dimensional feature space, while preserving and highlighting
important geospatial semantics. Recent work has shown that learn-
ing region embeddings can improve the performance of a variety of
downstream prediction tasks. These approaches primarily leverage
improved measures of similarity in the latent embedding space for
better predictions. For example, Wang et al. [26] approached the
LESR problem by considering both temporal dynamics and multi-
hop human mobility transitions. Other recent work [7] considers
locality-constrained spatial autocorrelations of regions, or learns
region representations directly from satellite image data [12].

However, in many real-world applications we have many dif-
ferent channels, or modalities, of data to consider. For example,
figure 1 shows a satellite image of downtown San Francisco and
three regions of interest, (1, rz, r3). For each region, we observe its
POT’s, inter-region spatial distance, inter-region human mobility,
and satellite image. A simple spatial measure would indicate that
r2 is most similar to r3. However, when we look at the regions
through all channels of information, we can see that ry is most
semantically related to r;. Both are popular tourist destinations
with similar POI’s. Both encompass residential buildings as well
as a park. Additionally, many tourists travel between r; and rp via
taxi. Recent work has demonstrated that capturing a joint view of
the multi-modal state of data samples can discover better seman-
tic representations. For instance, learning from both image and
text data can improve, efficiency [6] or effectiveness [15] in image
classification and word embedding models.

However, learning representations of geospatial regions is non-
trivial. For one, it is difficult to jointly learn from many data types
without excessively increasing the input dimensionality. Existing
multimodal embedding techniques from NLP and computer vision
are domain-specific and cannot be directly applied to geospatial
settings. One major shortcomings of these models is that they do
not account for spatial autocorrelation or spatial heterogeneity. A
key characteristic of spatial problems is spatial autocorrelation, or
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Figure 1: Example of multimodal spatial data in San Francisco. We
observe three regions (ry, r2, r3) their Point-of-Interest data (gray
dotted box), distances to other regions, satellite images (red box),
and human mobility data (yellow lines). Note that r; and r; are
closer in physical space, but r; is more semantically related to r;
in terms of POI’s, human mobility, and visual features. Simple mea-
sure of similarity may not adequately capture spatial heterogeneity.

the covariance of samples from nearby locations. Additionally, het-
erogeneity often occurs when the variance of data is non-constant
over space. A good spatial embedding technique should capture
both of these properties in the latent space. Moreover, state-of-the-
art geospatial embedding methods [7][26][12] do not account for
spatial autocorrelation of multiple data modalities across regions.

Therefore, in this paper we explore learning region embeddings
from multimodal data. To solve this problem we propose the Regio-
nEncoder, a deep learning approach that is well suited for spatial
problems. The model takes as input data from satellite images,
spatial networks, weighted human mobility graphs, and point-of-
interest data and learns a unified embedding of each region through
a discriminator function. Spatial autocorrelation of data is consid-
ered in two ways: 1) a Graph Convolutional Network that performs
approximate, local spectral operations, and 2) a discriminator that
learns to distinguish intra-region multimodal embeddings from
negative samples. Additionally, spatial heterogeneity is modeled
through a loss term that reconstructs a weighted graph of taxi
transition data.

In our experiments, we validate RegionEncoder on two predic-
tion tasks, and across two major urban environments: Chicago
and New York City. Additionally, we perform an ablation study
and qualitatively analyze the nature of the learned region embed-
dings. We demonstrate the proposed method is effective at learning
regional features that can improve the performance of a variety
of downstream tasks and discovers interesting semantics among
regions.

In summary, the key contributions of our paper are:

o We expand on the Learning an Embedding Space for Regions
(LESR) problem by exploring multimodal data for region
embedding (Section 2).

e We propose a novel deep learning model that learns repre-
sentations of regions across a variety of modalities, including
image, POI, spatial networks, and human mobility data (Sec-
tion 3).

e We empirically validate RegionEncoder on multiple down-
stream prediction tasks in two distinct urban environments
(Section 4).

2 PROBLEM DEFINITION

We define the problem of unsupervised representation learning of
discrete regions as a joint embedding learning problem of four dis-
parate data objects: a spatial graph, an inter-region human mobility
(flow’) graph, a set POI locations, and satellite images.

e Spatial Proximity is a natural indicator of regional simi-
larity and autocorrelation. Tobler’s first law of geography
posits that "everything is related to everything else, but near
things are more related than distant things" [23].

¢ Human Mobility Data has been shown to be a useful mea-
sure of similarity between geospatial regions [26] [25]. Intu-
itively, a large volume of people travelling from one region to
another should indicate an important semantic relationship.

e Point-of-Interest (POI) Data is an important measure of
the typical functions and activities of a region. Regions with
similar functions share a semantic relationship even if the
two regions are not spatially adjacent. POI data are often
high-dimensional due to the large variety of locations in an
urban environment.

o Satellite Image data has shown to be useful for a variety of
geospatial computing tasks [12] [2]. Recent improvements in
remote sensing and satellite image technology have created
easy access to high-resolution, and high-frequency imagery.
The promise of such easy-to-access data is that of more
automated analysis of urban environments.

2.1 Data Types

In what follows, we provide formal definitions for the various data
objects we utilize in this work.

2.1.1  Urban Area Window. Prior to training the model, we define
a geo-spatial window that defines our larger region of interest. The
window is defined by a set of tuples that characterize the latitude
and longitude ranges, W = {(latmin, latmax), lonmin, latmax)}-

2.1.2  Regions. We then partition the space defined by our win-
dow, W, into a set of n non-overlapping regions, R = {r1,r2, ..., n},
where each region has dimensions (w, k). We typically construct our
regions by evenly splitting the latitude and longitude spaces such
that w = W, and h = W, where m is the
number of partitions on each dimension. This gives a total number
of regions, n = m?. Eachregionr; = (latfrll)m, latg,i)ax, E;l)m, latg,ll)ax
is defined by four bounding spatial points

lon

2.1.3  Spatial Graph. As is done many geospatial applications,
we have clear access to a spatial graph, G5 = (V, Es). The spatial
graph input has vertices, V which is equal to the set of regions R.

(s)

The edges, ¢; ;€ {0, 1}, denote that regions r; and r; are adjacent.



From the spatial graph Gs we can construct the adjacency matrix
A, and the degree matrix, D.

2.1.4  Mobility Flow Graph. We collect a set of taxi mobility
data wherein we observe a set 7 = {t1,t2, ..., t7} of trips. Each
trip ¢; has the format (s, lo ), where I and I are the start and end
locations coded by latitude and longitude coordinates. We map
each trip in 7 to the corresponding start and end regions, r; and r;
respectively. We can then construct the flow graph Gy = (V, &),
where the vertices V are the same as above, and the weighted

edges, Sf = {eg) }, are normalized counts of inter-region taxi flow.
We input these data into our model by means of a weighted edge

matrix, Q, where each component, w;; = ejj -

2.1.5 POI data. Additionally, we input a set of Point-of-Interest
(POI) data, P = {p1,p2, ..., pp}, where each point-of-interest, p; =
(l1ats lions €) is defined by it’s latitude point, [;,;, longitude point,
Y05 and POI category, ¢ € C. We map each observed point-of-
interest, p; to its corresponding region, r;, and compute each re-
gion’s POI distribution. From the POI data we construct a matrix
of nodal features, X € R("*P) where p is equal to the number of
categories. In other words, the matrix X describes POI distribution
in each region, r;.

2.1.6 Image Data. The final raw input to our problem is a set
of n of ground satellite images, 7 = {[1,I,...,In}. Each image,

I = (latsl)m, latﬁ,i)ax, lon(r;)in, latﬁ,?ax is defined by four bounding
spatial points, such that ; = I;. We observe exactly one satellite
image per region. Additionally, each image, I;, is a color image with

three input channels.

2.2 Region Representation Learning

The goal, or output, of the region representation learning problem
is to learn a function that maps disparate data types to a single,
latent euclidean space:

I:X —HeRmdD (1)
Where X = (R, Q,A,X,D, ) and each row in H, h;, is a dis-
tributed vector representation of region, r; and I'(+) is a function that
encodes information from all data sources into a single latent space.
This vector representation should discover interesting semantics
among regions across the input data types, and be useful as fea-
tures in downstream machine learning tasks such as classification
or regression.

3 THE PROPOSED FRAMEWORK -
REGIONENCODER

In this section, we provide details of the proposed framework Regio-
nEncoder, a deep learning approach for learning low-dimensional
distributed representations of discrete spatial regions. An overview
of RegionEncoder is shown in Figure 2. It consists of three main
parts: (i) a denoising convolutional autoencoder extracting visual
features from satellite images; (ii) a graph convolutional network
(GCN) for learning representations from spatially distributed point-
of-interest (POI) data and taxi transition volume; and (iii) a discrimi-
nator for fusing the visual and spatial features into coherent feature
space. Next, we introduce the details of each component.
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Figure 2: RegionEncoder architecture. We input data from multi-
ple modalities in two simultaneous steps. 1) We feed raw visual in-
put from satellite images into a denoising autoencoder. 2) We embed
the spatial graph (adjacency, and degree matrices), a "flow" graph de-
rived from human mobility data, and nodal features using a graph
convolutional network. We input the hidden states from the autoen-
coder and GCN to a discriminator (multi-layer perceptron) to get the
global hidden state, h(gil>o pa TOT regionr;.

3.1 Denoising Autoencoder

Generally, an autoencoder is an unsupervised neural network that
projects samples from the original features space to a lower di-
mensional latent space via series of non-linear mappings [3] [7].
Typically, the autoencoder model tries to map its input to its output,
by minimizing the reconstruction error, L(L g(f(I))) [8]. Here f
and g respectively denote the encoder and decoder functions and
I is the input image tensor. In minimizing the reconstruction loss
the model learns an internal representation of the data. However,
given enough capacity an autoencoder can easily learn the iden-
tity function. This motivates the use of other classes of stochastic
autoenocoders such as denoising and variational autoencoders. In
this paper, we rely on the denoising autoencoder to provide a latent
space mapping for satellite images. We first perturb the input image
with a small amount of Gaussian noise, I; = I; + N(0, 1) and try and
reconstruct the original image from the noisy input by minimizing
L(1, 1) where,

himuge = f(g(himage)) @)

3.1.1 Reconstruction Loss. To train the RegionEncoder model,
we minimize the mean squared error of the reconstructed image to
its input as in equation 3.

L= 30 - 1) ®)
i=1

Where I; is the ground truth image, and I; is its denoised recon-
struction. In minimizing the loss in equation 3, the autoencoder
produces a hidden state of each image, himage-



3.1.2  Architecture. In many cases, the encoder and decoder func-
tions chosen are simple feedforward networks. However, given the
grid-like structure of image data, we rely on a Convolutional Neural
Network (CNN) to project the image data down at each layer to
construct a hidden representation. Specifically, we use two convo-
lutional layers in the encoder, followed by three fully connected
layers. In the decoder, we use three linear layers, followed by two
convolutional layers.

3.2 Graph Convolutional Network

Recent work has extended Convolutional Neural Networks from
low-dimensional, grid-like data to more high-dimensional, flexible
datasets such as graphs [11] [13] [4]. GCN’s typically rely on filter
parameters that are shared over all locations in the graph to project
nodal features at each layer. Recent work [13] uses a convolutional
architecture that approximates first-order spectral graph convolu-
tions by propagating the input data through augmented adjacency
and degree matrices (equation 4).

3.2.1 GCN Architecture. To learn a distributed representation
of each node in our regional graph, we follow this layer-wise prop-
agation rule [13]:

Z; = oD TAD:Z)W,_y) 4)
Where Z; is the network’s hidden state at layer [, A is the aug-
mented adjacency matrix, A = A +1I, and D is the degree matrix
derived from A. For an activation function, o(-) we choose ReLU.
In the context of the proposed RegionEncoder model, the GCN
component takes as input a nodal feature matrix, X € R, where
p is the number of nodal features. More specifically, in equation
4 we input X for Zy, The GCN component then outputs a hidden
state, Hy,qpp € R™¥graph.
In our experiments we let the number of layers, I = 2. We then
extract the hidden state from the GCN at the final layer, Z3, and
use that as our graph embedding, Z; = Hy,4pp-

3.2.2 GCN Loss. The GCN component of the model is crafted
to minimize two objectives simultaneously. These two carefully
selected loss components have the effect that the GCN layer of the
RegionEncoder model learns to distinguish true contextual regions
from a noise distribution, as well as encoding knowledge from the
trajectory similarity as in [26].

SkipGram Loss with Negative Sampling: First, RegionEn-
coder minimizes the well-known SkipGram loss with negative sam-
pling in equation 5. In this loss term, the graph representation is
constrained to values that distinguish regions that are spatially
adjacent from those that are not.

1 n
Ly===3"%" logp(relrs) =
n i=1 ceC; (5)

n

k
Z Z [log (7(2):—C up,) + Z E[log 0(—02; o)l

i=1 ceC; j=1

S

where k is the number of negative samples, v, is the vector
representation for region, r;, and the set C; is the set of context
regions for region, r;. We construct the context from nodes adjacent

to r;. To get negative samples for r;, we randomly select k regions
not adjacent to r; with probabilities proportional to their degree.
Transition Reconstruction Loss: Second, we incorporate a
loss component for reconstructing a weighted representation of
the graph based on taxi mobility flow in equation 7. This has the
effect that the latent graph embedding is also trained to preserve
the first order proximity of the mobility flow graph. We model the
reconstruction of the weighted edge graph using KL-divergence as
in [19]. We define the joint probability of any two regions, r; and

rj:
1
plri,rj) = T (6)
1+e Ui
where vy, , is the vector representation for region, r;. The distance
between the empirical sample probability, p(r;, ) = w—dl—
etwee € emp ple p Y, p(risTy) 2(i,j)er Wij’

and the estimated probability, p(r;, 7;) is a natural choice of loss
function to reconstruct the weighted flow graph. Using KL-divergence
[19], we get the transition reconstruction loss:

Lf = d(ﬁ(r,-,rj),p(r,-,rj)) = Zzwij logp(ri,rj) 7)

i=1 j=1

3.3 Discriminator

The final component of the RegionEncoder model uses a feedfor-
ward network, or Multilayer Perceptron (MLP), that acts to unify
all disparate data sources into a single latent space embedding.
The discriminator layer takes as input the hidden state produced
by the autoencoder, Himgqge, and the hidden state from the GCN,
Hy, 4pn- Using a parameterized function, f(-), the upper-level of
the RegionEncoder model learns to predict whether two hidden
states hEII’ZL age’ and h;’r)ap n
8. In our experiments, f(-) is a Multilayer Perceptron with a single
hidden layer. We concatenate the vectors, h(.i) and hU> j> as

image grap
they are fed into the MLP.

belong to the same region as in equation

3.3.1 Binary Cross Entropy Loss.
— 1) = (@) f)
P(’]i,j =1)= f(hilmage’hgraph) ®)

where 7; ; is a binomial random variable such that:

1 i=j
R 9
1mi,j {0 i )

When training the RegionEncoder model, as the outputs from the
lower layers are fed into the discriminator, we produce k negative
samples. To construct the set of negative samples, we uniformly

sample vectors h(llrzl age and hgr)a P’

the loss in equation 10 over the n ground truth samples and k
negative samples

where i # j. We then compute

n+k

Lg=- Z ni,j logP(Ui|hEiLage’h(éjr)aPh) " (10)
i=1

(1 = ni,j)log(1 = p(n; |hgir21age’ h(gjr)aph))



Finally, we extract the hidden layer from the discriminator MLP
(i)

and treat it as our global embedding vector, h
global

3.4 Training Objective

We jointly train all components of our model by minimizing the
global loss function in equation 11. The vector A’ = [As, Af,A1]is
a hyperparameter, where each A; controls the contribution of L; to
the global loss function. We tune A via random search. Additionally,
In our experiments, we incorporate an L-2 norm weight decay term
on each model parameter vector, which we omit here for brevity.

L =L+ AsLg +Afo+A[L[ (11)

4 EXPERIMENTS

In the following section ! we describe the data, and the strategies
used to evaluate the RegionEncoder method. We perform two quan-
titative evaluations across urban environments: Chicago and New
York City. First, we recreate the experiment in [7]; we use learned
region embeddings directly as features in a regression model to
predict region popularity from mobile checkin-ins. Second we use
a similar strategy to predict house prices. For each task, we test
learned feature vectors produced by various embedding techniques.
We vary the complexity of the embedding technique as well as the
amount of information used. Our hypothesis is that learning across
modalities under the RegionEncoder framework produces regional
features that yield improvement in downstream prediction tasks.
We then perform an ablation study wherein we evaluate the effect
that each major architectural component has on the prediction er-
ror of both tasks. Finally, we qualitatively analyze the latent space
produced by RegionEncoder, and what semantics are captured. In
this experiment, we look at a variety of query regions in Chicago
and discuss what semantics they share with their nearest neighbors
in the embedding space.

4.1 Region Popularity Prediction

We first evaluate the RegionEncoder model by predicting region
popularity. We recreate the experiment in [7] and use a linear
regression to predict regional check-in counts. Let p; denote the
popularity of region r;. Then the goal is to learn a regression model
pi = BTx; + €, where x; is a vector of region-level features. We
use linear regression with an L-1 penalty (lasso) with 5-fold cross-
validation [24]. Additionally, we define regional popularity, p; as
the average POI check-in count in each region.

4.2 House Price Prediction

Our second task is house price prediction in both Chicago and New
York city. In this experiment, we train the model, §; = f({x;,z;)),
where §j; is the predicted price per square foot for house i, x; is a
vector of region-level features, and z; is a vector home-level features.
We use the same home-level features in all models: number of
bedrooms, number of bathrooms, square footage. In our experiment
we train and evaluate a random forest regression model [18] using

!Code and links to data used can be found on the author’s GitHub: https://github.com/
porterjenkins/region-encoder
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Figure 3: House prices and region popularity in Chicago and New
York City. (a,c) House prices are colored by relative price per square
foot: expensive homes are given green values and less expensive
homes red values. (b,d) Each region’s centroid is plotted. The size
of a region’s bubble is scaled by it’s popularity.

5-fold cross-validation for all feature baselines and report the results
in table 2.

4.3 Experimental Settings

4.3.1 Dataset Description. All of the data sets used in our ex-
periments are publicly available from government entities or open
APT’s.

Region and Window definitions We first select the window
of the two urban environments: Chicago and New York City. We
define each urban window via latitude and longitude ranges

o Chicago Latitude: [41.6284, 41.9989], Longitude: [-87.6998,
-87.5262]

e New York City Latitude: [40.6994, 40.8293], Longitude: [-
74.0210, -73.8908]

In each city, we partition both the latitude and longitude ranges
into 50 equal subspaces. These subspaces define the boundaries of
each region within our window, giving us a grid with 2,500 regions.
In Chicago, each region is approximately .30 km x .80 km; in New
York city each is approximately 0.22 km x 0.28 km.

Mobility Data: As discussed above, human mobility data can be
used as a measure of correlation among discrete spatial regions [26]
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[25]. We use taxi 'flow’ data as a measure of mobility between re-
gions, which we collect from open data portals provided by Chicago
[21] and New York City [20], respectively.

In Chicago we collect approximately 113 million unique taxi
trips data from 2013 to 2018. Similarly, we collect 69 million unique
taxi trips in New York city from January 2016 to June 2016.

POI Data: Point-of-Interest data is obtained from the Foursquare
API [5]. In total, the data set contains 112,000 POI records in Chicago.
In New York, we observe 83,000 POI locations. Each record provides
the venue name, category, number of check-ins, latitude, longitude,
and number of unique visitors. Some example categories include
residential, nightlife, education, and food.

Image Data: Additionally, we collect satellite image data from
the Google Static Maps API [9]. The luxury of the static API is that
it allows for high resolution images up to .3 m resolution. We query
a total of 5,000 images, one for each region in each city. We then
compress each image to 50-by-50 pixel (3 X 50 X 50) resolution for
training.

House Price Data Home sale prices are collected via Zillow [30],
the popular real estate valuation website. We observe the actual
sale price, latitude, longitude, and square footage of each home.
In Chicago, we collect approximately 45,000 house price samples.
In New York, we obtain more than 54,000 homes in Manhattan,
Brooklyn, and Queens.

We plot the spatial distribution of house prices and check-ins in
both New York and Chicago in Figure 3.

4.3.2 Embedding and Feature Extraction Baselines. We compare
RegionEncoder to the following feature learning baselines. Note we
hold constant the hidden dimension size at d = 32 for all reported
results and all methods.

Naive (spatial) A naive spatial feature vector. For house
price prediction, we use a one-hot representation of regions
because we observe multiple samples per region. In the re-
gion popularity experiment where we observe one sample
per region, we use latitude and longitude of the region cen-
troid.

e Raw Features We concatenate raw features from the in-
put data. This results in a sparse feature vector of the POI
distribution and rows from the mobility transition matrix.

o Raw Features + Kmeans We use the same features as the
previous baseline, but also concatenate a simple represen-
tation for region images [12]. We cluster images from the
2,500 regions in pixel space using kmeans [24]. Each region
is represented as its distance to cluster centroids.

e DeepWalk The DeepWalk model [17] is an extension of

Word2Vec [16] to graph data. We simulate random walks

along the spatial graph that act as input sentences to the

Word2Vec model. In our experiments, we let walks = 100 and

the walk length = 40.

Node2Vec The Node2Vec algorithm [10] uses biased random

walks to learn latent features that maximize the likelihood

of preserving local networks. We generate random walks on
the spatial graph, set the walk length = 80 and let walks =

10.

AutoEncoder We use a denoising autoencoder [1] [8] to
learn features for satellite images. We perturb the input im-
ages with gaussian noise.

Tile2Vec is an unsupervised representation learning tech-

nique for image data that relies on CNN’s and triplet loss

[12]. Each triplet consists of an anchor, a neighbor, and a

distant region. In our experiments, we let the margin, m = .1

and define the neighborhood as spatially adjacent regions.

We use the same CNN architecture as the image encoder

layer of RegionEncoder.

¢ Heterogeneous Dynamic Graph Embedding (HDGE) is
a recent spatial embedding approach that jointly embeds a
spatial graph and flow graph with temporal dynamics [25].
Specifically, the authors observe taxi trip transitions each day
at time ¢t = 1, ..., T. They combine this graph with a spatial
graph weighted by inverse distance and learn embedding
vectors via a skipgram objective. We implement their model
using T = 8 time periods each day.

e Multi-view Spatial Network Embedding (MSNE) The
proposed method in [7] relies on multi-view, intra-region
POI networks in an autoencoder framework to represent
regions. Additionally, the authors incorporate a novel top-k,
autocorrelation layer to capture inter-region similarities. We
let k = 5 in our implementation.

e Autoencoder + Deepwalk We concatenate feature vectors
from the Autoencoder and DeepWalk, which accounts for
image and spatial graph data.

e MSNE + Tile2Vec We concatenate feature vectors from

MNSE and Tile2Vec, two cutting edge methods. This ac-

counts for all input data modalities.

4.4 Results

In both our house price and region popularity prediction experi-
ments, we use mean absolute error (MAE) and root mean squared
error (RMSE) to evaluate each embedding technique.

Region Popularity Prediction The results from both Chicago
and New York City (table 1) demonstrate that using features learned
from the RegionEncoder model results in lower cross-validated
prediction errors.

In particular, the features learned using RegionEncoder are useful
in the New York environment. We see significant improvement over
baselines across both metrics. Even the cutting edge approaches,
MSNE, and HDGE result in higher test error. Moreover, indepen-
dently adding features from different modalities (Raw Features +
Kmeans, Autoencoder + DeepWalk, and MSNE + Tile2vec) cannot
match the performance of learning the features jointly.

In general, embedding techniques that utilize graph information
only (DeepWalk, Node2Vec, etc...) achieve better results as com-
pared to those that embed images only (Tile2Vec, AutoEncoder).
We see the biggest performance boost as POI and mobility are
added (MSNE). We see another boost when all data sources are
embedded separately (MSNE + Tile2Vec) and again when all data
are embedded jointly (RegionEncoder).

In Chicago, RegionEncoder still outperforms all baselines in
terms of both RMSE and MAE. However, the improvement is not
as dramatic as what we see in New York. We observe improvement



Table 1: Region Popularity Prediction: 5-fold cross-validated errors for predicting average check-in count per region.

Chicago New York City

Unsupervised Features Data RMSE MAE RMSE MAE
Naive (spatial) - 308.2375 132.5632 1770.9903 539.2173
Raw Features Graph, Mobility, POI 520.9765 | 219.2348 | 2034.5784 | 545.1958
Raw Features + Kmeans | Graph, Mobility, POL Image | 529.6387 | 226.5416 | 2036.0156 | 570.6420
DeepWalk Graph 299.9857 121.4501 1782.6428 568.7610
Node2Vec Graph 298.2287 119.7224 1771.8400 534.5297
Tile2Vec Image 315.9221 147.5118 1818.9645 | 606.1170
Autoencoder Image 307.8026 131.2001 1826.5907 | 611.7085
Autoencoder + DeepWalk Image, Graph 300.4517 | 123.1669 | 1792.7352 | 583.4387
HDGE Graph, Mobility 311.5563 137.3171 1731.7406 | 469.2052
MSNE Graph, Mobility, POI 296.4344 109.1206 1749.7983 | 467.6025
MSNE + Tile2Vec Graph, Mobility, POL Image | 296.4829 | 109.0536 | 1751.3210 | 468.0732
RegionEncoder Graph, Mobility, POL Image | 293.9023 | 107.6857 | 1713.3417 | 421.2943

Table 2: House Price Prediction: 5-fold cross-validated errors for predicting house price per square foot

Chicago New York City

Unsupervised Features Data RMSE MAE RMSE MAE
Naive (spatial) - 20072.5992 862.0086 6380.4850 507.7427
Raw Features Graph, Mobility, POI 17916.6182 | 774.0934 | 5902.5004 | 472.6627
Raw Features + Kmeans | Graph, Mobility, POI Image | 16589.4051 | 725.4515 | 6320.5263 | 487.9767
DeepWalk Graph 18428.6258 843.6346 5980.6836 | 479.5409
Node2Vec Graph 18140.0479 811.8831 6742.3929 514.8081
Tile2Vec Image 17588.1067 821.0038 6290.1082 586.9296
Autoencoder Image 19258.4378 846.9709 5486.1961 468.1077
Autoencoder + DeepWalk Image, Graph 18952.6573 | 865.8051 | 5674.6054 | 464.9848
HDGE Graph, Mobility 18731.7773 823.4923 6186.7524 | 473.5029
MSNE Graph, Mobility, POI 18323.5702 834.6031 5981.0261 502.7883
MSNE + Tile2Vec Graph, Mobility, POL Image | 18555.0707 829.6533 6274.0676 511.925
RegionEncoder Graph, Mobility, POL Image | 14634.5901 | 659.9702 | 5113.3097 | 451.6293

over the naive and raw feature models, while the MSNE and HDGE
methods are more comparable. This is likely due to how these
methods explicitly model spatial and network dynamics of regions.

House Price Prediction For house price prediction, the raw
feature approaches both perform quite well relative to other em-
bedding methods. The effect of additional data sources is not as
pronounced as in the region popularity experiment. However, we
again see that jointly embedding all data sources yields superior
performance.

Discussion It is noteworthy that the raw feature baselines (Raw
Features, Raw Features + Kmeans) perform quite well in the house
price prediction task, as opposed to the region popularity prediction.
This could be due to the fact that the total sample size (number
of homes) in the house price task is much larger than the region
task (number of regions). It is likely the larger sample size partially
overcomes the dimensionality of the input. In conclusion, both in-
stances of this experiment show that jointly modeling all modalities
result in embedding vectors that better capture regional semantics.

4.5 Ablation Study

In order to distill features across multiple channels of information,
the RegionEncoder model relies on several core components embed-
ded in the architecture and loss function. As discussed in section
3, these components are a GCN with skipgram loss, a GCN with

reconstruction loss, a denoising AutoEncoder, and a Multi-layer
Perceptron to fuse data across modalities.

In this section, we report the effect of each of these components
on the house price and region popularity predictions tasks. In order
to diagnose the effect of each component independently we train
an AutoEncoder (AutoEncoder) on just the images alone. We then
remove the image data and train two graph convolutional networks
separately. We train the GCN using only the skipgram loss term
(GCN-SG). The GCN is trained again only using the loss term that
reconstructs the flow matrix (GCN-flow) as in equation 7. Finally,
we train the GCN with both skipgram and reconstruction loss
(GCN-SG-flow).

We also wish to know the effect of the MLP fusion component.
This final layer jointly combines the latent image and graph em-
bedding vectors into one latent space. We can test the effectiveness
of this operation by comparing to a simple concatenation of the
GCN-SG-flow and AutoEncoder embedding vectors. We refer to
this concatenated embedding as (GCN-SG-flow + AE). Finally, all of
these variants are compared to the proposed RegionEncoder model.
The results are reported in figure 4.

In general, we see that jointly embedding all data provides the
most robust representation. In New York City, we see that adding
more information informs the predictive models. The three sin-
gle loss approaches, AutoEncoder, GCN-SG, and GCN-flow perform



New York City

Chicago

House Price Prediction ($/sqft)

Region Popularity Prediction (avg POI check-in count)

6200
I RMSE MAE B RMSE MAE
6000 480 1800 600
5800 550
470 1750
5600
500
460 1700
5400
450 450
5200 1650
<« & & < & & O N S & N
S F 5SS S S F 7 & S S S
& & o o & o & & & P2 o & I & &
< O ¢ & N & & & & & & & & N & &
IS 8 . 8 ESE 58 %
S & & & & & A W N A
<§ Q~Z $ Q~Z 9« (2 9« ng
¢
330
I RMSE MAE I RMSE 150 MAE
20000 200
320
19000 850 140
310
18000 800 130
17000 300
750 120
16000 200
700 110
15000
280
X L < < L
o‘\"o \f’o K\d‘x K\°$ x & obz & N R {° x & o& o‘\"e ef"o K\G‘x {° x & o& & Y\c" {° N x & cbz
& L ol & R & L ol & R & L d & & & <~ ] 4 R
F o & F & & & ° RO F O & F & & & & & &
8 O E S O S S S S & S R
® S S w S $ S ¥ S $ S ¥ o 5
¥ & & ¥

Figure 4: Ablation Study: we hold out each component of the RegionEncoder model and observe the RMSE and MAE of our prediction tasks.
(Top row) In the New York City House Price Prediction task, adding information and training jointly improves performance. For region
popularity prediction, the image component does no help performance. (Bottom row) In Chicago, training end-to-end across all data types

results in superior predictive accuracy on both tasks.

poorly. As more channels of information are added error decreases.
For example, both GCN-SG-flow and GCN-SG-flow + AE outper-
form the single loss approaches. Furthermore, under both RMSE
and MAE jointly learning the features (RegionEncoder) provides
the best performance.

However, the image information may not be beneficial for pre-
dicting region popularity in NYC. Figure 4 shows the models that
rely on images (AutoEncoder, GCN-SG-flow + AE) struggle com-
pared those using spatial and traffic flow graphs. RegionEncoder
achieves similar results as GCN-SG-flow, but perhaps in spite of
the AutoEncoder component. Because this task is primarily per-
formed in Manhattan, a small, densely populated island with many
skyscrapers, it is possible that the visual features of many regions
are the same. Thus it is difficult to find correlations between these
features and popular points across the city. This is not case in
Chicago.

In Chicago, the proposed RegionEncoder method dramatically re-
duces the RMSE and MAE of both predictions tasks. Simply adding
more information, or only optimizing one single component of the
loss has little or no effect on test error. Additionally, the visual
features extracted by RegionEncoder play an important role in both
tasks. The final MLP fusion layer appears to offer clear benefit.
For both house price and region popularity prediction, RegionEn-
coder significantly reduces error over the concatenation operation,
GCN-SG-flow + AE. This finding validates our hypothesis that
jointly learning representations across modalities better captures
important environmental properties.

4.6 Evaluation of the Latent Space

Finally, we explore the latent space learned by RegionEncoder to
demonstrate the model has indeed discovered meaningful semantics
of the urban environment. We query three regions from across the
latent vector space. For each query region, we visually show its
three nearest neighbors in the embedding space, compare their POI
distributions, and discuss whether they are connected by an edge
in the spatial graph.

4.6.1 Downtown and Grant Park. The first query region we dis-
cuss (region id: 33-21) covers part of the downtown area and a
portion of Grant Park, a popular downtown destination. We visu-
alize the query region and its neighbors (33-20, 34-22, 36-21) in
figure 5. We can see obvious visual similarities: all three neighbors
capture parts of the downtown area, different views of the park,
and the prominent coast of Lake Michigan. Figure 5 also shows the
the distribution of the most frequent POI categories. For the query
region, as well as its neighbors, the most frequent POI falls in the
office category. Additionally, nearly all regions have ’building” and
“taxi’ locations, POI's we might expect in a downtown environment.
It is worth noting that each of the neighbors of this query region
are also adjacent in the spatial graph.

4.6.2 Suburban Residential. The second query region (id: 48-12)
covers a residential area near uptown Chicago, the far north side of
the city. The three nearest neighbors discovered in the embedding
space are regions 47-12, 49-11, 44-10. Figure 5 shows the regions



all share a high degree similarity in terms of POI locations. All are
highly residential, while each includes many other locations for
transportation (e.g., bus station, rental car, etc.). Additionally, the
images in figure 5 all share similar qualities, and are distinct from
the other examples previously discussed. Moreover, the third neigh-
bor, 44-10, is southwest of the query region in terms of geospatial
distance, but covers a highly residential, suburban area surrounding
a park. Notably, this region is not adjacent in the spatial graph.

4.6.3 Southwest Chicago. The final query region (region id: 15-
1), covers an area on the southwest side of Chicago and falls on
the edge of our pre-defined window. Distant from downtown, this
region has no observed POI or mobility data. Additionally, it’s
neighbors in the latent space (27-42, 32-39, 27-43) have either sparse
or completely missing poi and taxi data. However, all of these
regions are visually similar, as shown in 5. In the absence of all
other data, RegionEncoder is effective at embedding from visual
input alone. None of the neighbors discovered in the embedding
space are adjacent in the spatial graph.

5 RELATED WORK

Our work largely touches on three core literature streams: 1) net-
work embedding learning, 2) spatiotemporal representation, and 3)
multi-modal representation learning.

5.1 Network Embedding

Network embedding methods are inspired by literature from neu-
ral language models in natural language processing. For instance,
Word2Vec [16] is a neural network that is trained to predict context
words conditional on an input word, which produces distributed
vector representations for words. In a similar fashion, DeepWalk
[17], generates random walks along a graph and treats them as
sentences in a Word2Vec paradigm, embedding the nodes in a la-
tent space. LINE [19] relies on a loss function that preserves first-
and second-order proximities between nodes. Recently, Graph Con-
volutional Networks (GCNs) have been shown to learn effective
node- and graph-level representations. For instance, the authors
of [4] generalize CNN'’s to graph-structured data based on local
spectral filters and effecient pooling. Additionally, [13] propose a
layer-wise propagation rule that approximates localized first-order
spectral convolutions in a semi-supervised setting. This approach is
also attractive because it jointly embeds graph structure and nodal
features. However, because all of these methods are developed on
graph data, none of them consider other modalities, such as images.

5.2 Spatio-temporal Representation Learning

This stream of research can be thought of as a generalization of
network and word embedding to spatial objects. One early work
in this domain [26] proposed a method that learns region rep-
resentations from temporal dynamics and multi-hop transitions
of large-scale taxi flow data. Wang et al [27] develop PTARL, an
autoencoder-based framework that embeds GPS traces of driving
behavior. More recently, [7] proposed a multi-view framework for
learning region representations based on intra- and inter-region
auto-correlations. Different from the graph-based methods dis-
cussed previously, Tile2Vec [12] takes raw images or remote sensing
data as input and seeks to learn representations of regions with

a convolutional neural network with triplet loss. Albert et al [2]
train CNN’s on large-scale satellite image data for land-use classifi-
cation. They show that these models learn similar representations
of geospatial regions across cities and countries, and extract high-
level concepts about regions. While some of these methods develop
multiple views of the same graph, none jointly consider multiple
modalties in their formulation.

5.3 Multi-modal Representation Learning

Finally, our approach for learning representations of spatial regions
draws on ideas from work in multi-modal representation learning.
DeViSE [6] is an object recognition model that mitigates the need
for massive labelled training data by learning visual semantics from
raw text. Lazaridou et al [14] extend the SkipGram model to a multi-
modal context by allowing the model to predict visual and linguistic
context jointly. Mao et al [15] propose a weight sharing strategy
for Recurrent Neural Networks that learn word embeddings by
incorporating visual information from associated images. None of
these methods are developed for spatial data, and therefore do not
account for spatial autocorrelation across modalities.

6 CONCLUSION

In this paper, we tackle the LESR problem and proposed a novel
method, which we call RegionEncoder, for learning representa-
tions of discrete spatial regions. Our method jointly embeds data
across different modalities, including satellite images, human mo-
bility, point-of-interest locations, and spatial graphs. By doing so
we are able to capture a more holistic view of regions, and provide
a better notion of semantic similarity in a geopspatial environment.
Across two prediction exercises and two urban environments, we
empirically demonstrate that the representations learned by Regio-
nEncoder are effective at improving performance of downstream
tasks.
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