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Non-Stationary Model for Crime Rate Inference
Using Modern Urban Data

Hongjian Wang, Huaxiu Yao, Daniel Kifer, Corina Graif, Zhenhui Li

Abstract—Crime is one of the most important social problems in the country, affecting public safety, children development, and adult
socioeconomic status. Understanding what factors cause higher crime rate is critical for policy makers in their efforts to reduce crime
and increase citizens’ life quality. We tackle a fundamental problem in our paper: crime rate inference at the neighborhood level.
Traditional approaches have used demographics and geographical influences to estimate crime rates in a region. With the fast
development of positioning technology and prevalence of mobile devices, a large amount of modern urban data have been collected
and such big data can provide new perspectives for understanding crime. In this paper, we use large-scale Point-Of-Interest data and
taxi flow data in the city of Chicago, IL in the USA. We observe significantly improved performance in crime rate inference compared to
using traditional features. Such an improvement is consistent over multiple years. We also show that these new features are significant
in the feature importance analysis. The correlations between crime and various observed features are not constant over the whole city.
In order to address this geospatial non-stationary property, we further employ the geographically weighted regression on top of
negative binomial model (GWNBR). Experiments have shown that GWNBR outperforms the negative binomial model.

Index Terms—Computer Crime inference, taxi flow, geographically weighted regression, negative binomial model.
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1 INTRODUCTION

Understanding the factors that predict crime is important because
even though crime rates have been generally declining since the
early nineties, recent years have started to see lower rates of de-
cline and even some upward fluctuations after 2010 [1]. Moreover,
reports of direct and indirect victimization and exposures to crime
remain very high [2]. For instance, more than two-fifths of children
and youth in a recent national survey reported a physical assault
in the previous year [3]. Understanding the neighborhood context
of crime is particularly important because victimization and other
forms of crime exposures have many severe consequences. Beyond
the high medical bills and violent death, consequences include
behavioral and mental health problems, aggression, substance
abuse, post-traumatic stress disorder, and suicide, lower academic
achievement, and engaging in further violence [4].

In this paper, we study the problem of crime rate inference
across communities. We select Chicago as the target of study
for the following reason. Chicago has more homicides and non-
negligent manslaughter rates (15.2) per 100,000 residents than
New York (4.0) and Los Angeles (6.5) according to the FBI
crime statistics for 2013 and has experienced no decline in the
past decade compared to the other two large cities, which have
been on a slow declining slope [5].

Traditionally, researchers have used demographic informa-
tion based on Decennial Census (e.g., population poverty level,
socioeconomic disadvantage, racial composition of population)
to estimate the crime rate in a community [6]. However, such
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Fig. 1: An illustration of various types of features we use in
Chicago. The POI distributions across community areas profile the
region functionality. The taxi flows connect non-adjacent regions
and act as “hyperlinks” on the space.

information only contains the social information of residents in
the neighborhoods and misses information on daily population
dynamics within and between neighborhoods. In our experiments
(Section 6), negative binomial and geographically weighted neg-
ative binomial models that only use demographic features and an
intercept result in a relative error of as much as 30% for crime
rate estimation in Chicago. Existing studies also highlight the
importance of geographical influence [7] in estimating crime rates,
i.e., the crime in the nearby communities can be propagated to
the focal community. But, depending on the geographic scale of
analysis, geographical influence does not contribute a great deal in
improving the crime inference on top of demographic feature (with
at most 0.4% relative improvement in our experiments focused
on larger geographic units than census tracts). This is probably
because the nearby communities also share similar demographics,
which limits the additional benefit of geographical influence.
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Recently, big data reflecting city dynamics have become
widely available [8], e.g., traffic flow, human mobility, social
media, and crowd-generated Points-Of-Interest (POI). As shown in
Figure 1, such newer types of big data could provide new insights
to advance our understanding of traditional socioeconomic urban
problems, such as the crime rate inference problem we focus on
in this paper. In particular, we propose to study two newer types
of urban data: POI and taxi flow.

POI data. POI data provide venue information such as GPS
coordinates, category, popularity, and reviews. These POIs mostly
belong to categories such as food, shop, transit, education, etc.
As one example, the POI data reveal locations of gas stations and
convenience stores, which are more likely to be targets for crime
because of lack of guardianship, easy to access, and presence of
readily attainable valuables [9]. Recent studies have also shown
that using such categorical information of POIs are helpful to
profile neighborhood functions [10]. Such neighborhood functions
could further help us predict crime rate (e.g., communities with
less education or entertainment facilities may have a higher rate
of crime).

Taxi flow data. A huge amount of taxi flow data reflect
important information about how people move across neighbor-
hoods in the city. In previous studies, when using geographical
influence [7], scientists assume that a community is affected by
other spatially proximate communities. However, even if two
communities are distant in geographical space, they could be
strongly correlated if many people frequently travel between these
two communities [11]. We hypothesize that taxi flows may be
considered as “hyperlinks” in the city that connect different areas
and we use such data to estimate crime rates. We do not expect
taxi flow data to capture the movements of offenders, as the vast
majority of taxi trips are probably unrelated to crime. Instead, we
view taxi flow as a proxy for broader patterns of population routine
activity and mobility, commuting flows, and other forms of social
and economic exchanges between two communities over space.
Such exchanges may increase the number of potential targets and
opportunities for crime [12], [13] or contribute to inter-community
diffusion of information about successful local strategies to control
or prevent crime (e.g., successful features of neighborhood watch
programs).

We apply various regression models to 5 years of crime data
in Chicago. The most frequently used model is linear regression;
however, because crime count cannot be negative, we also use
negative binomial regression. We demonstrate that negative bino-
mial model generally performs better than the linear regression.
In addition, adding POI and taxi flow features reduces the relative
error by at least 5% in our experiments. This indicates that the new
urban data provide additional information about the communities
which are not covered by traditional features.

As an extension to the conference version [14], we investigate
models that incorporate geographic heterogeneity; that is, we do
not expect the same features to have the same relation to crime in
every location because crime incidents in different regions may be
associated with different social-economic factors. In fact, there are
several neighborhoods where negative binomial model gives poor
prediction. This tells us that a global model such as the negative
binomial model, which assumes a constant correlation between
crime and observed features, would not yield accurate estimates.
Therefore, we further propose to employ a graphically weighted
regression approach to capture the non-stationary property of
crime. The intuition behind this strategy is to train many local

models instead of one global model to predict the crime. The
geographically weighted regression is a useful framework on how
to pick samples and weight them for local model training. We
thus apply geographically weighted regression in combination
with negative binomial model, and the experiments show further
improvements over the global model.

In summary, the contributions of this paper are: 1) We study
an old but important crime inference problem by utilizing new
urban data: POIs and taxi flows. We provide detailed discussions
of how to construct features, tests of different combinations of
features, and the theoretical interpretations of the result from
a social scientist (a co-author in the paper). 2) We find that
utilizing these new types of big urban data improves the crime
rate inference. 3) We employ a geographically weighted regression
framework to capture the non-stationary property of crime. 4)
We conduct a systematic comparison between various regression
models. The geographically weighted negative binomial model has
significantly better performance, and could serve as a new baseline
for future crime inference problems.

The rest of this paper is organized as follows. We first review
the related work in Section 2. The crime inference problem is
formulated in Section 3. We discuss the inference model in Section
4 and feature extraction procedure in Section 5. The Section 6
presents the quantitative evaluation results on real data. Finally,
we conclude the paper in Section 7.

2 RELATED WORK

Sensing technologies and large-scale computing infrastructures
have produced a variety of big data in urban spaces (e.g. human
mobility, POI, and traffic). These heterogeneous data convey rich
knowledge about city dynamics and enable us to address many
urban challenges. For example, human mobility data could help
improve the efficiency of transportation systems such as estimating
real-time traffic flow [15], [16], and forecasting travel time for road
segments [17], [18], [19] or a trip [20], [21]. The POI and taxi data
can be used to infer air quality [22] and city noises [23]. With the
similar motivation, we employ such modern urban data for crime
rate inference.

In the criminology literature, researchers have studied the
relationship between crime and various features (social, de-
mographics, and geographic factors). Examples are historical
crime records [24], [25], education [26], ethnicity [27], income
level [28], unemployment [29], and spatial proximity [7]. In data
mining, newer types of data are used. For example, studies use
twitter to predict crime [30], [31], and cellphone data [32], [33] to
evaluate crime and social theories at scale. Overall, existing work
on crime prediction can be categorized into three paradigms.

Time-centric paradigm. This line of work focuses on the
temporal dimension of crime incidents. For example, Mohler et.
al. [24] propose to use a self-exciting point process to model the
crime and gain insights into the temporal trends in the rate of
burglary. In another study, Ratcliffe [34] investigates the temporal
constraints on crime, and propose an offender travel and opportu-
nity model. His findings suggest that a proportion of offending is
driven by the availability of opportunities presented in the routine
lives of offenders.

Place-centric paradigm. Most existing works adopt a place-
centric paradigm, where the research question is to predict the
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location of crime incidents. The predicted crime location is some-
times referred as hotspot, conceptualized at various geographical
sizes. For example, Toole et. al. [35] use criminal offense records
to identify spatio-temporal patterns at multiple scales. They em-
ploy various quantitative tools from mathematics and physics
and identify significant correlation in both space and time in the
crime behavioral data. Short et. al. [36] study the dynamics of
crime hotspots and identify stable hotspots, where criminals are
modeled as random walkers. Bogomolov et. al. [33] use human
behavioral data derived from mobile network and demographic
sources, together with open crime data to predict crime hotspots.
They compare various classifiers and find random forests have
the best prediction performance. Wang et. al. [30] use automatic
semantic analysis to understand natural language in Tweets, from
which the crime incidents are reported. Some other work [37],
[38] employ kernel density estimation (KDE) to identify and
analyze crime hotspots. Those studies form another form of
crime prediction, which relies on the retrospective crime data to
identify areas of high concentrations of crime. Nakaya et. al. [39]
extend the crime cluster analysis with a temporal dimension.
They employ the space-time variants of KDE to simultaneously
visualize geographical extent and duration of crime clusters.

Population-centric paradigm. In the last paradigm, research
focuses on the criminal profiling at individual and community
levels. At the individual level, Wang et. al. [25] aim to auto-
matically identify crimes committed by the same individual from
a historical crime database. The proposed system, called Series
Finder, is designed to find and classify the modus operandi (M.O.)
of criminals. At the community level, Buczak et. al. [40] use fuzzy
association rule mining to identify crime patterns. The rules they
found are consistent across all regions. They identify association
rules from population demographics in communities. In another
paper, Traunmueller et. al. [32] use computational methods to
validate various social theories at a large scale. They used mobile
phone data in London, from which they mine the people dynamics
as features to correlate with crime.

The problem we tackle is to estimate crime rate in a com-
munity, which is different from the first two categories of work,
mainly because our innovation lies in using newer type of data
to enhance the commonly used traditional counterparts. More
specifically, we use POI to enhance the demographics information
and use taxi flow as hyperlinks to enhance the geographical
proximity correlation. Although in our problem we do not consider
the temporal dimension of crime in depth, it could be a promising
supplement to better profile crime. Our problem is not location
prediction of any particular crime incident. Therefore the meth-
ods proposed in place-centric methods are not applicable in our
problem. However, the features we propose may be incorporated
in those crime prediction models.

Our approach falls into the third paradigm because we try to
predict the crime rate for Chicago community areas. In our study,
the community areas are well-defined and stable geographical
regions. The newly proposed POI features and taxi flows provide
new perspectives in advancing our understanding of crime rates
across community areas.

It is worthy noting that our problem is different from the spatial
interpolation (kriging) problem in geostatistics field [7]. Kriging
method in general is used for spatial interpolation, where the goal
is to estimate the value of a target variable at a certain location
given the observations of the same variables on nearby locations

[41]. The original kriging technique only involves one variable,
and aims to interpolate missing observations of the target variable
on a continuous plane [42]. Later on, various extensions on
kriging are developed [43]. Among those extensions, regression-
kriging [44] and co-kriging [45], [46] have been widely used in
many applications, such as estimating soil nitrogen [47] and real-
time precipitation prediction [48]. Both regression-kriging and
co-kriging incorporate auxiliary variables to estimate the target
variable. The co-kriging assumes that auxiliary variables strongly
correlate with target variable and there are abundant observations
of auxiliary variables. The regression kriging learns a regression
function between auxiliary variables and target variables, and then
applies kriging method to estimate the regression residuals. In our
problem, the co-kriging method is not appropriate, because some
of the auxiliary variables are not strongly correlate with crime
rate by itself. The regression kriging method, on the other hand,
could be used as a baseline for comparison. However, it is worth
mentioning that the kriging method aims to interpolate missing
values to minimize overall variance, which is in contrast with our
goal of optimal prediction.

3 OVERVIEW

The crime data collected in Chicago has detailed information
about time, location (i.e., latitude and longitude), and types of
crime. In our problem, the term crime count refers to number of
crime incidents in a region (i.e., community area) in a year. The
community area is used as our geographical unit of study, since it
is well-defined, historically recognized and stable over time [49].
In total, there are 77 community areas in Chicago. Crime rate
is the crime count normalized by the population in a region. We
use vector y = [y1, y2, . . . , yn]T to denote the crime rates in
regions. The crime rate inference problem is to estimate the crime
rate in one region using the crime rate of other regions in the same
year by considering the features of regions and correlations among
regions.

The crime data of Chicago are obtained from the City of
Chicago data portal [50]. Chicago is one of few cities with detailed
crime data that are made public online. The crime dataset contains
the incident date, location (street name and GPS coordinates), and
primary type from year 2001 to 2015. In total there are 5,856,414
recorded crime incidents over 15 years, or on average 390,417
crimes incidents per year. We visualize the crime rate in Figure 2,
from which we can see that the downtown area has the highest
crime rate.

In this paper we study the crime rate inference problem. More
specifically, we estimate the crime rate of some regions given the
information of all the other regions. Without loss of generality, we
assume there is one community area t with crime rate yt missing,
and we use the crime rate of all the other regions {yi}\yt to infer
this missing value. Our problem is mathematically formalized as
follows

ŷt = f({yi}\yt, X), (1)

where X refers to observed extra information of all those commu-
nity areas.

We consider two types of features X for inference:
• Nodal features: Nodal features describe the characteristics of

the focal region. Such features include demographic informa-
tion and Point-of-Interest (POI) distribution. Demographics are
frequently used in literature, but POI is a newer type of big



IEEE TRANSACTIONS ON BIG DATA 4

35
36

37 38 39

4

40 41
42

1

11
12

13

14
15 16

17

18 19

2

20
21

22

23 24
25

26 27 28
29

3

30
31

33
34

10

8

32

43

44 45 46
47 48

49

5

50

51

52

53
54 55

56
57

58
59

6

60

61

62 63

64
65 66 67 68

69

7

70 71

72 73

74 75

76
77

9

Fig. 2: Crime rate of Chicago by community areas. The commu-
nity area #32 is Chicago downtown, which has the highest crime
rate.

data, which we find significantly improve the crime inference
accuracy.

• Edge features: (1) Geographical influence. Geographical in-
fluence considers the crime rate of the nearby locations. This
feature has been extensively used in literature as well. To
estimate the focal region, the crime rate of nearby regions
are weighted according to spatial distances. (2) Hyperlink by
taxi flow. Locations are connected through the frequent trips
made by humans, which can be considered as the hyperlinks
in space. This type of feature has not been previously studied
in the criminology literature. We propose to use taxi trips to
construct the social flow. Our hypothesis is that two regions that
are more strongly connected through social flow will influence
each other’s crime rate.

In the following sections, we first discuss the inference models
based on these two types of features in Section 4 and then
discuss how to construct these features using the real-world data
in Section 5.

4 INFERENCE MODEL

4.1 Linear Regression
The most straightforward prediction model is linear regression.
This model assumes that the error term for yi follows a Gaussian
distribution εi ∼ N (0, σ2).

Equation (2) gives the linear regression formulation of our
problem:

y = αTXN + βfW fy + βgW gy + ε. (2)

XN ∈ RdN×n is the nodal feature matrix where column i is
the nodal feature vector of region i, dN is the dimension of
nodal features, and n is the number of regions. Both demographic
features and POI distribution features are included in XN as
nodal features. W f ∈ Rn×n is the flow matrix of taxi flow, and
W g ∈ Rn×n is the spatial matrix representing the geographical
adjacency. In addition, α ∈ RdN and βf , βg ∈ R are the
coefficients for corresponding features. Note that ε ∈ Rn is the
only stochastic variable on the right-hand side; all other terms
are fixed observation values. Therefore, we incorporate all the
fixed observations into one term X ∈ R(dN+2)×n, and we get
the standard regression problem:

y = wTX + ε,

where w = [αT , βf , βg]T is the concatenation of all coefficients.

4.2 Negative Binomial Regression

In our problem, we aim to infer the crime rate, which is guaranteed
to be a non-negative integer. However, linear regression does
not ensure this property. Poisson regression is another form of
regression, more appropriate for non-negative data than linear
regression [51], [52]. With shortened notation xi, which represents
all features in a region, the Poisson regression model has the
exponential function as link function

E(yi) = ew
Txi . (3)

In the following, we omit the index i wherever it is clear to
refer to the variable of a single region. The link function comes
from the assumption that y follows the Poisson distribution with
mean λ. Additionally, the mean λ is determined by observed
independent variables x, i.e. λ = ew

Tx. Adding all together, the
joint probability of y is

P (y|w) =
e−e

wT x

(ew
Tx)y

y!
. (4)

However, Poisson regression enforces the mean and variance
of dependent variable y to be equal. This restriction leads to
the “over-dispersion” issue for some real problems, that is the
presence of larger variability in data set than the statistical model
expected. To address this, we use the Poisson-Gamma mixture
model, which is also known as negative binomial regression.
Negative binomial regression is frequently used in crime research
[53].

Given that the crime rate y follows Poisson distribution with
mean λ, in order to allow for larger variance, λ itself is a random
variable having a Gamma distribution with shape k and scale θ =
p

1−p . The probability density function of y becomes

P (y|k, p) =

∫ ∞
0

PPoisson(y|λ) · PGamma(λ|k, p)dλ

=

∫ ∞
0

λy

y!
e−λ · λk−1 e

−λ(1−p)/p

( p
1−p )kΓ(k)

dλ

=
Γ(k + y)

y!Γ(k)
py(1− p)k. (5)

This is exactly the probability density function of negative bino-
mial distribution.

In negative binomial regression, the link function is

E(y) = ew
Tx+ε. (6)

The error term eε is the mixture prior from the Gamma distribu-
tion, and we assume its mean is 1, i.e. E(eε) = 1. This setting
ensures that E(y) = ew

Tx · eε = ew
Tx. Meanwhile, given the

probability density function of negative binomial distribution in
Equation (5), the mean of negative binomial distribution is pk

1−p .
Combining the theoretical mean with the link function, we have

p = ew
T x

ewT x+k
. Therefore, the probability mass function of y

becomes

P (y|w, k) =
Γ(k + y)

y!Γ(k)

(
ew

Tx

ewTx + k

)y (
k

ewTx + k

)k
. (7)
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The log-likelihood function of negative binomial model is
given in Equation (8), where w and θ can be estimated by
maximizing likelihood.

L(w, k;y, X) =
n∑
i=1

{
yi ln

(
ew

Txi

ewTxi + k

)
+k ln

(
k

ewTxi + k

)

+ ln Γ(yi + k)− ln Γ(yi + 1)− ln Γ(k)

}
. (8)

4.3 Non-Stationary Model

The two regression models described above assume the statistical
correlations between crime rate and observed features are constant
over space, because they learn one set of parameters for all
community areas. In the real world, it is very likely that some
statistical correlations between crime rate and observed features
are not stationary over space. In this section we propose to apply
a non-stationary model, called geographically weighted regression
(GWR) [54], to capture the different crime correlations at different
places.

Formally, a global spatial regression model such as the afore-
mentioned two models has the following form

y = f(x,w), (9)

where w is the parameter of the regression function f . Given a
set of data points {yi,xi}ni=1 sampled at locations l1, · · · , ln, the
maximum likelihood estimation of parameter w is given by

w∗ = arg max
w

n∑
i=1

L(yi, f(xi,w)). (10)

This global model is stationary, because the weights used for
predictions are the same at all locations, when we fit the model to
find the optimal parameter.

Instead, the GWR learns a local regression function f with
parameter wi at each location of interest li:

y = f(x,wi), ∀li ∈ {l1, l2, · · · , ln}, (11)

where li is usually a geospatial coordinate in the two dimensional
space. In order to train a lot of local models, we need a larger
number of samples at each location li, which are usually not
available. To address this issue, GWR uses the spatially nearby
samples and gives each sample a weight according to the distance
between sample point and target location li. The objective for the
local model at location li is

w∗i = arg min
wi

n∑
j=1

γijL (yj , f(xj ,wi)) , (12)

where γij is the spatial kernel to weight the neighboring data point
at location lj for regression model at location li.

Choice of spatial kernel γ. There are several spatial kernels
we can choose from. The most straightforward solution is to ex-
clude samples that are further away from target location. Namely,

γij =

{
1 if dij < τ
0 otherwise, (13)

where dij is the distance between li and lj , and τ is a distance
threshold. Clearly, such a solution suffers from the discontinuity.

A better solution is to specify the weight γ as a continuous
function of distance d, which is

γij = exp

(
−
d2
ij

2h2

)
, (14)

where h is referred to as the bandwidth of the Gaussian kernel.
Intuitively, when the samples are dense near the target location lt,
the h can be set smaller, so that we give lower weights to those
samples far away. On the other hand, if the samples are sparse,
h should be set larger, so that we consider those further away
samples as well to train our model. When h is set to infinity,
the GWR becomes a global model, since all samples have equal
weight 1.

One issue with the Gaussian kernel in Equation (14) is that
when the samples are dense, it over-smooths local models by con-
sidering too many samples at each location. A popular alternative
kernel utilizes the bi-square function,

γij =


(

1− d2ij
τ2

)2

if dij < τ

0 otherwise.
(15)

The bi-square kernel functions provides continuous weight for
samples up to distance τ . In our problem, since we do not have
too many samples available, therefore we use the Gaussian kernel,
and in experiment we will show the bandwidth tuning to get the
best results.

Applying GWR on existing methods. The GWR is more like
a framework rather than a method, which can be applied to many
existing regression methods. The classic GWR is applied to linear
regression model resulting in the following objective for location
li

w∗i = arg min
wi

n∑
j=1

γij(yj −wT
i xj)

2. (16)

Similarly, the GWR framework can be employed with the
negative binomial regression model, and we call this geographi-
cally weighted negative binomial regression (GWNBR). Here, the
objective for model at location li is to optimize the weighted log-
likelihood function:

L(wi, ki;y, X) =
n∑
j=1

γij

{
yj ln

(
ew

T
i xj

ew
T
i xj + ki

)
+ ki ln

(
ki

ew
T
i xj + ki

)

+ ln Γ(yj + ki)− ln Γ(yj + 1)− ln Γ(ki)

}
. (17)

4.4 Optimization

The objective in Equation (17) can be solved using a block
coordinate gradient descent method, by alternatively solving wi

and ki. Details for solving each step are given below.
Fix ki, solve wi:
When ki is fixed, the objective function can be simplified as
follows:

min
wi

−
n∑
j=1

γij

{
yj ln

(
ew

T
i xj

ew
T
i xj + ki

)
+ki ln

(
ki

ew
T
i xj + ki

)
}.

(18)
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The gradient is:

∂L
∂wi

=
n∑
i=1

γij{yi
xje

wT
i xj

ew
T
i xj

− (yi + ki)xje
wT

i xj

ew
T
i xj + ki

}. (19)

Then,

wt
i = wt−1

i + α
∂L

∂wt−1
i

. (20)

Fix wi, solve ki:
When wi is fixed, the objective function becomes:

min
ki

=

−
n∑
j=1

γij

{
yj ln

(
ew

T
i xj

ew
T
i xj + ki

)
+ ki ln

(
ki

ew
T
i xj + ki

)

+ ln Γ(yj + ki)− ln Γ(ki)

}
. (21)

The gradient is:

∂L
∂ki

=
n∑
i=1

γij{
yi

ew
T
i xj + ki

+ ln(
ki

ew
T
i xj + ki

)

− ki

ew
T
i xj + ki

+ 1 + ψ(yj + ki)− ψ(ki) + yi}, (22)

where ψ(x) = Γ′(x)
Γ(x) is digamma function. Then,

kti = kt−1
i + α

∂L
∂kt−1

i

. (23)

5 FEATURE EXTRACTION

In this section, we will discuss the details of features used in
our method. In the literature, the most commonly used features
are demographics and geographical influence. We also extract two
types of new features from Point-Of-Interest data and taxi flow
data. Below we describe the datasets used to construct features
and the characteristics of these features.

5.1 Nodal Feature: Demographics
Socioeconomic and demographic features of neighborhoods have
been widely used to predict crime [33], [55], [56], [57]. Previous
studies have shown that crime rate correlates with certain demo-
graphics. For example, scholars [6], [58] suggest that population
diversity leads to less crime in certain neighborhoods. In our
study, we include demographic information from the US Census
Bureau’s Decennial Census [59]. Using 2010 census information
would overlap with the time in which crime is measured. Instead,
we use year 2000 demographic data because we are interested in
predictors that precede temporally the period in which crime rates
are evaluated. The demographics include the following features:

total population, population density, poverty index, dis-
advantage index, residential stability, ethnic diversity, race
distribution.

The poverty index measures the proportion of community area
residents with income below the poverty level. The disadvantage
index is a composite scale based on prior work [60], a function of
poverty, unemployment rate, proportions of families with public
assistance income, and proportion of female headed households.
The residential stability measures home ownership (the proportion
of owner occupied housing units over all occupied housing units)

and the proportion of residents 5 years old and older who resided
in the same house 5 years earlier [49], [61]. Racial and ethnic
diversity is an index of heterogeneity [6] based on the combination
of Hispanic vs. non-Hispanic and the racial categories. Those
who checked Hispanics are included in that category independent
of what race they noted. Those who checked non-Hispanic are
separated by race (White, Black, Asians, Pacific Islanders, and
Others). In 2000, respondents could pick more than one racial
categories. Our categories reflect the corresponding race noted as
the only one. If respondents checked more than one race, they
were included in the category of “Others”.

Figure 3 visualizes the crime rate and demographics features
in Chicago by community areas. Comparing with Figure 2, it is
clear that the crime rate and poverty index and disadvantage index
are consistent, the ethnic diversity shows an inverse correlation,
and the total population has little correlation with crime.

Table 1 shows the Pearson correlation coefficient between
various demographics features and the crime rate at community
area level. The corresponding p-value is also calculated and shown
in the table to indicate the significance of the correlation coeffi-
cient. There are in total 77 community areas in Chicago. We can
see that the poverty index and disadvantage index positively and
strongly correlate with crime, while the ethnic diversity negatively
correlates with crime. Other features such as total population,
population density, and residential stability have weaker correla-
tions. One counter-intuitive observation is that the total population
has a weak and negative correlation with crime. The reason is
that we use crime rate in each community area, which is already
normalized by the population, and therefore the total population
and population density have less impact.

TABLE 1: Pearson correlation between demographic features and
crime rate (* indicates significant correlations with p-value less
than 5%).

Feature Correlation p-value
Total Population -0.1269 0.2716

Population Density -0.1972 0.0855
Poverty Index 0.5573* 1.403e-07

Disadvantage Index 0.5959* 1.082e-08
Residential Stability -0.0453 0.6965

Ethnic Diversity -0.5545* 1.678e-07
Percentage of Black 0.6696* 2.779e-11

Percentage of Hispanic -0.3820* 0.0006

5.2 Nodal Feature: Point-of-Interest (POI)

While demographics are traditional census data, POI is a type of
modern data that provide fine-grained information about locations.
We collect POI from FourSquare [62]. POI data from FourSquare
provide the venue information including venue name, category,
number of check-ins, and number of unique visitors. We mainly
use the major category information because categories can charac-
terize the neighborhood functions. There are 10 major categories
defined by FourSquare:

food, residence, travel, arts & entertainment, outdoors
& recreation, college & education, nightlife, professional,
shops, and event.

In total, we have crawled 112,000 POIs from FourSquare for
Chicago. Most of these POIs are in the downtown area of Chicago.
For the purpose of visualization, we normalize the POIs count per
category by the total POI count in a neighborhood and plot two
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(a) Total population
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(b) Poverty index
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(c) Disadvantage index
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(d) Ethnic diversity

Fig. 3: (a)-(d) Demographics in Chicago by community areas. Darker colors indicate higher values. Features are normalized into [0, 1].
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(a) Nightlife
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(b) Professional

Fig. 4: POI ratio per neighborhood. The saturation of color
is proportional to the ratio value. The “professional” category
distribution is more consistent with the crime distribution, and
therefore it is the most correlated with crime. Meanwhile, the
“nightlife” category is negatively correlated with Chicago crime.
The POI ratios are independently normalized for different POI
categories.

selected categories, i.e. nightlife and professional, in Figure 4.
The darker colored neighborhoods in Figure 4 are the ones with a
higher proportion of residence POIs.

TABLE 2: Pearson correlation between POI category and crime
rate (* indicates significant correlations with p-value less than
5%).

POI category Correlation p-value
Food -0.1543 0.1803

Residence -0.0610 0.5984
Travel -0.0017 0.9883

Arts & Entertainment -0.0049 0.9661
Outdoors & Recreation 0.0668 0.5637
College & Education -0.0078 0.9473

Nightlife -0.1553 0.1775
Professional 0.3221* 0.0043

Shops -0.1676 0.1450
Event 0.2196 0.0549

In Table 2 we show the Pearson correlation between POI
category and crime rate. The category “professional” is most
significantly correlated with the crime rate. Under the professional
POI category, there are some venues with a large population
concentration, such as transportation center, convention center,
community center, and co-working space. In those venues, the
population volume is high and residential stability is low, therefore
the professional POI counts positively correlates with crime rate.
One counter-intuitive observation is that “nightlife” category is
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Fig. 5: Absolute POI count distribution. In our crawled POI
dataset, most community areas have less than 100 venues. Mean-
while, the downtown area there are over 10, 000 venues for one
community area, e.g. #8, #32.

not positively correlated with crime (−0.1553). This can be seen
in Figure 4(a). The majority of nightlife venues in Chicago are
located in the northern area, while most crime incidents occur in
the downtown area.

There are different ways to use the POI data. The straightfor-
ward definition of POI distribution is calculated by normalizing the
POI count in each category by the total POI counts. However, the
POIs in Chicago are not evenly distributed. As shown in Figure 5,
most POIs are in the downtown area and some areas only have a
few POIs. If normalized by the total number of POIs in a neigh-
borhood, two neighborhoods may show similar distributions but
they are quite different. For example, a downtown neighborhood
and a distant neighborhood may both have a high ratio of the food
category but the downtown neighborhood has many more POIs in
total and is more dynamic in population constitution. Therefore,
using the raw count instead of normalized distribution is more
effective. This is also demonstrated in estimation accuracy as
shown in Table 3, where the POI count feature has a performance
gain of 10% over POI percentage feature.

TABLE 3: Using POI count instead of POI percentage improve the
estimation accuracy. Estimation for crime in 2014 with all other
features.

Scheme MAE MRE
Count 272.51 0.268

Percentage 302.61 0.298

5.3 Edge: Geographical Influence
Together with the US census demographics data, we also collected
the boundary shape files of Chicago, which are used to calculate
the geographical influence feature. Previous studies have also



IEEE TRANSACTIONS ON BIG DATA 8

0 100000 200000 300000 400000 500000 600000 700000

Geographical influence feature value

0

1000

2000

3000

4000

5000

6000

C
ri

m
e
 r

a
te

#32

#76
#38

(a)

6

3

5095

7

10420

8

11424

11059

15060

16030

19714

24

14341

28

29763

32

60085 76

7087

900623935

22387

7566

8040

62109

592327618

5128

33

5106

9495

6120

77

9302

(b)

0 1000 2000 3000 4000 5000 6000

Hyperlink by taxi flow feature value

0

1000

2000

3000

4000

5000

6000

C
ri

m
e
 r

a
te

#32

#47

(c)

Fig. 6: (a) The correlation between geographical influence feature fg and crime rate y. We marked out three outliers and their
corresponding community area ID. (b) Major taxi flows between neighborhoods from January to March in 2014. The number on the
edge is the traffic volume. We set a threshold of 5000 and only plot high volume flows. The label on a node is the corresponding
community area ID. We can see that there are several hub community areas, such as #6, #8, #32, which are all in the downtown areas.
(c) Correlation between taxi flow feature ff and crime rate y. We marked out two outliers and their corresponding community area ID.

shown that the crime rate at one location is highly correlated with
nearby locations [63], [64]. Such geographical influence is also
frequently used in the literature [65], [66]. It is calculated as:

fg = W g · y, (24)

where W g is the spatial weight matrix. If region i and j are not
spatially adjacent, wgij = 0; otherwise, wgij ∝ distance(i, j)−1.
Here distance refers to the distance function to calculate the
distance between two regions. Without loss of generality, in this
paper we use the euclidean distance between the centroids of two
regions as distance(i, j).

In Figure 6a, we plot crime rate with respect to geographical
influence calculated in Equation (24). We observe an obvious
positive correlation, which means if nearby neighborhoods have
a high crime rate, the focal neighborhood is more likely to have a
high crime rate. We also observe a few outliers in Figure 6a. These
neighborhoods have very different crime rates in their nearby
neighborhoods compared to their own. For example, in Figure 2,
community area #38 locates in an area where the neighbors have
high crime rates but its crime rate is relatively low; in contrast,
neighborhood #32 has a high crime rate even though its neighbors
have relatively low crime. The community area #76, home of the
O’Hare International Airport, is far from most of other community
areas, however its own crime rate is relatively high.

5.4 Edge: Hyperlinks by Taxi Flow
In our Chicago taxi dataset, there are 1,038,476 taxi trips in total
from January to March in 20141. For each trip, the following
information are available: pickup/dropoff time, pickup/dropoff
location, operation time, and total amount paid. We requested
the taxi trip records from Chicago under the Illinois Freedom of
Information Act. Figure 6b shows a visualization of the major
flows at community level.

One of our hypotheses is that the social interaction among two
community areas propagates crime from one region to another.
The Chicago taxi data captures the social interactions among var-
ious community areas. To calculate this, we first map all taxi trips

1. This taxi dataset is different from the taxi dataset used in our KDD paper.
In KDD we used taxi trips from October to December in 2013. We changed
to a newer dataset, because there are many taxi trips in 2013 having wrong
destination information (they report the same coordinates outside of USA).

to community areas to get the taxi flow wfij ,∀i, j ∈ {1, 2, · · ·n}.
Then the taxi flow lag is constructed by the product of taxi flow
and the crime rate of neighboring regions as follows

ff = W f · y. (25)

The taxi flow W f is a matrix with entry wfij denoting the number
of taxi trips from j to i. Note that ∀i, wfii = 0 in matrix W f ,
because we have to exclude the crime in the focal area from its
own predictor. The semantic of this taxi flow feature is how much
crime in the focal area is contributed by its neighboring areas
through social interaction.

The correlation between taxi flow and crime rate is shown
in Figure 6c. From the scatter plot, we can see that overall the
crime rate is positively correlated with the taxi flow. There are
two outliers clearly shown in Figure 6c. The community area #32
is downtown, which has the highest crime rate and is hard to
predict by taxi flow. Another anomalous community area (#47)
has relatively low crime rate by itself. However, this area has a lot
of inflows from high-crime communities.

6 EXPERIMENTS

6.1 Settings

We use four types of data as features, including demographics,
POI, geographical influence, and taxi flow, to predict the total
crime rates. The details of feature data are described in Section 5,
and a description of crime data is available in Section 3. We con-
duct the crime prediction on five consecutive years, 2010 – 2014.
There are over 30 categories of crime, and many categories have
sparse values over regions. Therefore, we only study the effect of
crime categories in Section 6.7, and in the rest experiments, we
predict the total crime rate.

The following four methods, e.g. regression kriging (RK),
linear regression (LR), negative binomial regression (NB), and
geographically weighted negative binomial regression (GWNBR),
are evaluated. The regression kriging method employs a regression
model to incorporate all features as auxiliary variables, and then
applies kriging to estimate the regression residual. We add kriging
as one of the baseline, mainly because kriging is one of the most
widely used method for geospatial interpolation [41].
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We evaluate the estimation accuracy under various feature
combinations. The bandwidth of Gaussian kernel h used for
GWNBR is tuned separately under different settings. Refer to
Section 6.4 for more details on parameter tuning.

We adopt leave-one-out evaluation to estimate the crime rate
of one geographic region given all the information of all the other
regions. When we construct the spatial/social lag variable for the
training data, the effect of testing region is completely removed.
For example, if region yt is the testing region, the remaining
{yi|∀i s.t. i 6= t} become the training set. For any yi in the
training set, its geographical influence feature and taxi flow feature
are constructed only from {yi|∀i s.t. i 6= t}.

In the evaluation, we estimate the crime rate for testing
community areas. The accuracy of estimation is evaluated by mean
absolute error (MAE) and mean relative error (MRE).

MAE =

∑
i |yi − ŷi|
n

(26)

MRE =

∑
i |yi − ŷi|∑

i yi
(27)

6.2 Performance on Different Feature Combinations
The leave-one-out evaluation results are shown in Table 4. Ideally,
we should show all the possible combinations of feature groups,
which will result in 15 combinations. Due to the space limit,
we show 4 combinations in Table 4. Setting 1 (D+G) represents
the traditional features used in criminology literature. Setting
2 (D+G+P) and setting 3 (D+G+T) are used to examine the
individual effects of new features on POI and Taxi flows. Setting
4 (D+G+P+T) studies the combined effects of all features.

6.2.1 POI Feature
Adding POI features improves the accuracy of the NB model (see
setting 2 vs. setting 1 and setting 4 vs. setting 3 in Table 4). The
POI distribution reflects the functionality of a region. The most
correlated POI major category is “professional”, under which there
are a lot of venues like transportation center and conventional
center. These are locations with more dynamic movements of
people. Such location information is not reflected in any of other
features. POI thus provides unique information and it shows that
using big data can benefit us in advancing the study of traditional
crime inference problems.

Another issue worth discussing is whether POI is a surrogate
of population features from demographics. That is, a region with
more POIs is a region with higher population. However, as we
see from Table 4, the NB model using POI feature in addition
to the demographic and geographic features always outperforms
the model without the POI feature. This is because population
from demographics reflects the number of residents in that region,
but POI reflects dynamics of population (e.g., people go to
venues for food, entertainment, or travel). Therefore, the dynamic
population in POI further complements the residential population
in demographics.

6.2.2 Taxi Flow
To test our hypothesis that crimes do not only correlate with
nearby regions but also correlate through hyperlinks on the space
(i.e., the taxi flow), we examine if considering taxi flow improves
the inference accuracy. Comparing setting 3 with setting 1 in

TABLE 4: Performance evaluation on total crime rate prediction.
Various feature combinations are shown in each column. The
linear regression model, negative binomial model, and geograph-
ically weighted negative binomial model are compared by year
group.

Settings
Column ID 1 2 3 4

Features1
Demo X X X X
Geo X X X X
POI X X
Taxi X X

Year Model2 Error
MAE 463.68 461.67 452.39 421.59RK MRE 0.346 0.344 0.337 0.314
MAE 394.78 432.45 413.80 404.00

LR MRE 0.295 0.323 0.309 0.301
MAE 402.82 343.55 404.49 315.28NB MRE 0.301 0.256 0.302 0.235
MAE 343.44 332.38 327.20 265.93

2010

GWNBR MRE 0.256 0.248 0.244 0.198
MAE 460.83 422.01 424.05 430.77RK MRE 0.358 0.328 0.330 0.335
MAE 380.08 422.94 402.63 402.81

LR MRE 0.296 0.329 0.313 0.313
MAE 391.26 340.49 396.59 325.34NB MRE 0.304 0.265 0.308 0.253
MAE 330.04 325.56 322.77 275.61

2011

GWNBR MRE 0.257 0.253 0.251 0.214
MAE 455.94 418.04 438.13 412.55RK MRE 0.368 0.338 0.354 0.333
MAE 375.62 423.88 402.69 404.06

LR MRE 0.304 0.343 0.325 0.327
MAE 395.82 349.09 399.99 342.41NB MRE 0.320 0.282 0.323 0.277
MAE 332.70 342.95 334.83 330.51

2012

GWNBR MRE 0.269 0.277 0.270 0.267
MAE 408.90 468.39 457.20 413.77RK MRE 0.360 0.412 0.402 0.363
MAE 369.24 433.48 387.58 400.75

LR MRE 0.325 0.381 0.341 0.352
MAE 390.09 348.16 389.79 324.94NB MRE 0.343 0.306 0.343 0.286
MAE 319.75 334.58 316.70 316.34

2013

GWNBR MRE 0.281 0.294 0.279 0.278
MAE 404.76 365.14 453.07 380.83RK MRE 0.398 0.359 0.446 0.374
MAE 329.93 386.9 355.83 358.47

LR MRE 0.325 0.381 0.35 0.353
MAE 347.39 303.59 348.71 289.52NB MRE 0.342 0.299 0.343 0.285
MAE 282.35 280.58 274.16 272.51

2014

GWNBR MRE 0.277 0.276 0.270 0.268
1 Demo – demographic features, Geo – geographical influence, POI – POI

features, Taxi – taxi flow feature.
2 RK – Regression Kriging, LR – Linear Regression, NB – Negative
Binomial Regression, GWNBR – Geographically Weighted Negative

Binomial Regression.

Table 4, we find that the improvement by taxi flow is not obvious
for NB. However, comparing setting 4 with setting 2, we observe
a much more significant accuracy boost. The reason could be
that the taxi flow further complements the POI data. When POI
information is missing from the predictor, the city dynamics
captured by taxi flow are weakened as well.

Meanwhile, we note that incorporating the new urban data
(POIs and taxi flow) significantly improves the performance of
the NB model. Specifically, comparing setting 4 with setting 1,
the improvements in MRE are 6.6%, 5.1%, 4.3%, 5.7%, and 5.7%
for the five years, respectively.
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Fig. 7: The feature consistency results. The x-axis shows the effect
of adding different features. The y-axis shows number of years that
shows improvement.

6.2.3 Feature Consistency
In this section, we study the consistency of features as shown in
Figure 7. We get the effect of adding POI feature by comparing
setting 2 and setting 1 in Table 4. Similarly, setting 3 vs setting 1
shows the effect of adding taxi, and setting 4 vs setting 1 shows
the effect of adding both. For each method we show number of
years in y-axis, in which the added feature improves the model
performance.

We observe that adding both features shows the best perfor-
mance for both NB and GWNBR, meanwhile it is not necessarily
the best for other models. For example, LR shows that setting 1
is better than setting 4 over different years. RK shows that setting
1 is better than setting 4 in year 2013 but not other years. We
argue that it is crucial to use the right model to captures extra
information and achieves consistent results.

6.3 Performance on Different Methods
In this section, we compare the prediction error of different
methods, and we have the following observations.

6.3.1 Regression Kriging vs. Other Regressions
We observe that kriging method usually performs worse than other
regression methods. The reason is that the kriging method is
designed for interpolation and the objective is to minimize the
estimation variance. Kriging method usually overestimates a local
minimum and underestimates a local maximum due to the fact the
kriging uses average to interpolate. For the crime rate prediction
problem, other regression methods directly optimize the prediction
error, and therefore outperforms the kriging method.

6.3.2 Negative Binomial Regression vs. Linear Regression
In Table 4, we can see that under most settings, the negative
binomial regression significantly outperforms the linear regression
(with only a few exceptions when using demographic features
and geographic features). When using all the features, NB is
significantly better than LR with at least 5% improvement in
MRE. There are two reasons why the negative binomial regression
is more appropriate for crime rate estimation than linear regres-
sion. First, negative binomial regression guarantees the prediction
variable is non-negative. Second, it is difficult to get very precise
estimates of crime rate, and the negative binomial regression
allows a large variance in the estimated crime rate.

6.3.3 GWNBR vs. NB, and the Effectiveness of Non-
Stationary Model
Next, we compare the negative binomial regression with the
geographically weighed negative binomial regression. As shown

in Table 4, the GWNBR model consistently outperforms the NB
model in all experiment settings, which validate our hypothesis
that the correlation among crime rate and other features are non-
stationary.

In addition, comparing setting 2 (D+G+P) or setting 3
(D+G+T) with setting 1 (D+G) in Table 4, we observe that the per-
formance improvement for GWNBR by POI feature or taxi flow
separately is not obvious. However, when all features (D+G+P+T)
are used, GWNBR consistently gives lower estimation error than
using the traditional features only (D+G). In the best case (years
2010 and 2011), GWNBR reduces the MAE by over 15%. This
again suggests that the POI feature and taxi flow complement each
other, and that incorporating both features yields the best inference
accuracy.

In view of the superior performance of GWNBR, in all
the following experiments we only refer to the performance of
GWNBR.

6.4 Parameter Sensitivity

In the GWNBR model, the bandwidth parameter h in Equa-
tion (14) controls the influence of a nearby training sample. There
are several approaches to determine the bandwidth h [67]. Here,
we adopt the cross validation approach to estimate a best h from
data. More specifically, we fit a model on the training data and
report the prediction error on the testing data. The best h should
lead to the lowest prediction error.

In this experiment, we use data from year 2010 to study the
effect the bandwidth h on the performance of GWNBR. Using
a data-driven approach, we adopt the mean absolute error as a
measure of fit. In Figure 8, we plot the MAE against bandwidth
under leave-one-out setting. It is clear that the optimal bandwidth
is 5.8, which gives us the lowest MAE. Furthermore, we observe
that when h becomes larger, the performance of GWNBR model
approaches to the NB model (with a MAE of 310). This obser-
vation is consistent with the model, because an infinitely large
bandwidth gives all samples the same weight, which makes the
GWNBR essentially an NB model.
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Fig. 8: Bandwidth sensitivity analysis for geographically weighted
negative binomial regression.

6.5 Feature Importance

In this section, we study the importance of features through
significance tests.

From previous results, we see that combining POI features and
taxi flow will help improve the estimation accuracy. Now we try
to measure the significance of this accuracy boost by permutation
tests. If a feature correlates with crime, when we randomly
permute the values of this feature among neighborhoods, we will
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TABLE 5: Estimated p-value for each feature. The p-value is
defined as the possibility that a smaller error measure is observed
under the null hypothesis. Permutation test is conducted on 2014
data with all features (D+G+P+T) used.

Settings:
D+G+P+T

LR NB GWNBR
MAE MRE MAE MRE MAE MRE

358.47 0.353 289.52 0.285 272.51 0.268
Feature p-value

D 0.000 0.000 0.000 0.000 0.000 0.000
G 0.001 0.001 0.005 0.005 0.004 0.004
P 0.022 0.021 0.005 0.005 0.006 0.007
T 0.000 0.000 0.080 0.079 0.049 0.052

expect a higher error in crime rate estimation. So in each round
of permutation, we can get an error in estimation. We compare
the error with the original feature to the error distribution obtained
from permutations. We conduct 1,000 rounds of permutations to
approximately estimate the error distribution. The position of the
original error in this distribution indicates the significance of this
feature. For example, if the original error is smaller than 99% of
the errors from the permutations, the p-value is 0.01.

In Table 5, the p-values of different features are reported. The
demographics feature is the most significant feature with estimated
p-value being 0.00. In all the 1, 000 random permutations of
demographic feature, we never observe an error lower than the
original error. The proposed POI distribution and taxi flow are
significant as well, with p-values of 0.6% and 4.9% for the
GWNBR. We notice that the taxi flow has a p-value around 5%
instead of close to 0. One reason is that the taxi flow overlaps
with geographic feature. Thus, permuting taxi flow may not have
a critical influence on the estimation error in certain cases.

6.6 Improvements in Different Regions
The POI distributions and taxi flow patterns are different from
region to region. It is interesting to find out whether they have
a consistently positive impact in crime rate estimation. For POI
feature, we calculate the difference in estimation error (MAE) be-
tween two setting 3 (D+G+T) and setting 4 (D+G+P+T). Similarly,
the MAE difference between setting 2 and setting 4 is calculated
for the taxi flow feature. The results are shown in Figure 9. A
positive difference (blue area) indicates that adding the new feature
helps reduce the estimation error, while a negative difference (red
area) indicates that the new feature adds more noise to the data.

It is interesting to observe that in the downtown area, i.e.
community areas #8, #32, and #28, POI significantly improves the
estimation accuracy. The reason is two fold. 1) The demographics
information from census is mostly about the residing population
in the focal area. However, in the downtown area there are a lot
of floating population groups conducting various social activities,
and this is not reflected by the census demographics. The POI
information, on the other hand, reflects the functionality of a
region, hence complements the demographic information. 2) In
the downtown area, there are more POIs than other places, which
provide more complete information about the community profile.

As for the taxi flow feature, it helps the most in those suburb
area, because the taxi flow reflects the social interaction in those
areas. In the downtown area #28 and #8, the taxi flow feature
incurs a relatively large estimation error. The reason is that the taxi
flow distribution in Chicago is extremely skewed. Roughly 61%
of the Chicago taxi trips have a destination in the downtown area,
which may result in the model over-propagating crime estimates
from all of Chicago into the downtown area.
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(a) POI
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(b) Taxi flow

Fig. 9: Performance improvement per region in year 2014. Left:
The MAE difference of setting 3 and 4. Right The MAE difference
of setting 2 and 4. The color blue means the MAE is reduced by
adding the corresponding feature, while color red means the MAE
is increased. The color saturation indicates the value of difference.
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Fig. 10: Crime rate distribution of different categories in year
2014. Top-10 categories cover 92% of total crime incidents.

6.7 Experiments on Different Crime Categories

In this section, we evaluate the accuracy of crime rate estimation
for different crime categories. The crime data consists of 28 crime
categories. The percentage of each category is shown in Figure 10,
where we can see that theft is the top crime category taking 22%
of all crimes. Top-10 categories cover 92% of total crime, so we
only focus on these categories in this paper.

In Table 6, we show the performance of GWNBR on the top-
10 crime categories under various feature settings. There are some
interesting results that are different from the total crime. The main
reason is that different crime categories usually have very different
spatial distribution. Figure 11 shows the distributions for top-10
categories.

First, comparing setting 2 to setting 1, POI features make
the results worse on the following categories: narcotics, criminal
damage, burglary, and motor vehicle theft. From Figure 11 we can
see the distributions of these categories are different from the total
crime distribution. The most notable difference is that downtown
area is a center for overall crime, but not for these categories.
Recall that downtown areas have the highest POIs count from
Figure 5. Therefore, the POI features actually correlate less with
those categories. In Table 7, we quantitatively measure the corre-
lation between crime rate and POI features. Since the POI features
are a vector and the crime rate is a scalar, we use a pairwise
setting to calculate the correlation. More specifically, we report
the Spearman correlation of pairwise difference on crime rates
and the pairwise cosine similarity on POI features. The Spearman
correlation is typically negative, because if two communities have
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(a) Theft
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(b) Battery
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(c) Narcotics
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(d) Criminal Damage
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(e) Burglary
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(f) Other Offense

35
36

37 38 39

4

40 41
42

1

11
12

13

14
15 16

17

18 19

2

20
21

22

23 24
25

26 27 28
29

3

30
31

33
34

10

8

32

43

44 45 46
47 48

49

5

50

51

52

53
54 55

56
57

58
59

6

60

61

62 63

64
65 66 67 68

69

7

70 71

72 73

74 75

76
77

9

(g) Assault
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(h) Motor Vehicle Theft
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(i) Robbery
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(j) Deceptive Practice

Fig. 11: (a)-(j) Crime rates of overall and top-10 crime categories in Chicago by community areas in year 2014. Darker colors indicate
higher values.

TABLE 6: Performance of GWNBR on top-10 crime categories in
year 2014.

Settings
Column ID 1 2 3 4

Features

Demo X X X X
Geo X X X X
POI X X
Taxi X X

Category Error

Theft MAE 97.64 88.01 97.88 92.83
MRE 0.347 0.313 0.348 0.330

Battery MAE 59.65 57.74 59.95 55.30
MRE 0.251 0.243 0.252 0.232

Narcotics MAE 61.58 65.05 59.54 62.38
MRE 0.416 0.439 0.402 0.421

Criminal Damage MAE 29.37 32.65 29.11 32.40
MRE 0.200 0.222 0.198 0.221

Burglary MAE 21.90 23.49 21.79 23.13
MRE 0.237 0.254 0.235 0.250

Other Offense MAE 19.93 16.68 20.20 17.03
MRE 0.241 0.202 0.244 0.206

Assault MAE 19.48 18.37 18.93 16.36
MRE 0.240 0.226 0.233 0.202

Motor Vehicle Theft MAE 19.79 21.42 19.60 21.61
MRE 0.289 0.313 0.286 0.316

Robbery MAE 18.94 25.97 19.18 23.27
MRE 0.376 0.516 0.381 0.452

Deceptive Practice MAE 19.82 15.15 20.12 15.19
MRE 0.428 0.327 0.435 0.328

similar POI distributions (large cosine similarity), then their crime
rate difference should be small. Overall, we observe that crime
rates in narcotics, criminal damage, burglary, and motor vehicle
theft have small or close to 0 correlations with POI distributions.

Second, under the theft, deceptive practice, and other offense
crime categories, D+G+P (setting 2) achieves the best perfor-
mance. From Table 7 we can see that the correlations between POI
and crime rate of theft, deceptive practice, and other offense are
actually much stronger than other crime categories. The total crime
has a correlation of −0.109, and all these three categories have
much lower correlation values around −0.2. This demonstrates

that the POI feature is a dominant feature in crime prediction for
these three categories. As a result, the D+G+P feature setting has
the best performance for these three categories.

Third, under narcotics, criminal damage, burglary, and motor
vehicle theft crime categories, D+G+T (setting 3) gives the best
performance. These crime categories usually have a high biased
distribution toward suburb area according to Figure 11. Recall
from Figure 9 that taxi flow helps the most in suburb area, because
the social interactions in those areas have a significant influence
on crime.

Fourth, the robbery is an anomaly category, where neither POI
features nor taxi flow features improve the inference accuracy.
While this anomaly is hard to explain due to the limitation of our
data, we should note that in most cases the POI features and taxi
flow features are indeed helpful for crime rate inference.

7 CONCLUSION

In the social science literature, demographic factors and geo-
graphic neighbors are known to exhibit strong correlations with
crime. In this paper we address the problem of crime rate inference
using new features from urban data. More specifically, we propose
to use POI features to complement the demographic features, and
to use taxi flow as hyperlinks to supplement the geographical
influence. The intuition behind the POI features is that the POI
distributions of community areas profile the region functionality.
The intuition behind the hyperlinks is that the taxi flow models the
social interaction among nonadjacent regions, which potentially
propagate offenders, victims, or resources and information used
in crime control. We adopt a negative binomial regression model
over the linear regression model, because the count-based regres-
sion model addresses issue of non-negative outcomes and deals
with over-dispersion. We further propose to use a geographically
weighted regression model to handle the non-stationary across
space. Both POI and taxi flow features from a publicly accessible
dataset in Chicago are evaluated to be helpful. In the best scenario,
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TABLE 7: Spearman correlation between POI and crime rate. We
calculate the correlation in a pairwise setting, because the POI is a
vector while the crime rate is a scalar. More specifically, for each
pair of regions, we calculate the cosine similarity between their
POI features and the difference between their crime rates. Then
we report the Spearman correlation of the pairwise difference in
crime and the similarity of POI feature. The correlation value is
typically negative, indicating that when two communities have
similar POI distributions (large cosine similarity), their crime rate
difference should be small. For POI performance, “-” indicates
neutral performance, and “↑” indicates improved performance.

Category Correlation POI Performance
THEFT -0.216 ↑↑

BATTERY -0.103 ↑
NARCOTICS -0.019 -

CRIMINAL DAMAGE -0.072 -
BURGLARY -0.027 -

OTHER OFFENSE -0.226 ↑↑
ASSAULT -0.145 ↑

MOTOR VEHICLE THEFT -0.050 -
ROBBERY -0.077 -

DECEPTIVE PRACTICE -0.216 ↑↑
total -0.109 ↑

the POI distribution and taxi flow reduce the prediction error
(MAE) by over 15%.
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