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ABSTRACT
Increasing amount of urban data are being accumulated and re-
leased to public; this enables us to study the urban dynamics and
address urban issues such as crime, traffic, and quality of living. In
this paper, we are interested in learning vector representations for
regions using the large-scale taxi flow data. These representations
could help us better measure the relationship strengths between re-
gions, and the relationships can be used to better model the region
properties. Different from existing studies, we propose to consider
both temporal dynamics and multi-hop transitions in learning the
region representations. We propose to jointly learn the represen-
tations from a flow graph and a spatial graph. Such a combined
graph could simulate individual movements and also addresses the
data sparsity issue. We demonstrate the effectiveness of our method
using three different real datasets.
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1 INTRODUCTION
As of 2016, more than 54% of the world’s population live in urban
areas, and the percentage is expected to increase to 66 by 2050 [12].
In the meantime, increasing amount of urban data are being accu-
mulated in the digital form, such as human traces, traffic, venues,
local events, etc. Many cities (e.g., New York City, Chicago, and Los
Angeles) have joined the open data initiative and created websites
to release the city data to the public [4, 6]. Analyzing such data
could provide us with valuable insights into our urban dynamics,
and make the city smarter.

In this paper, we are interested in a typical inference problem,
which aims to infer a regional property (i.e. crime rate, personal
income, and real estate price) from observed auxiliary urban fea-
tures. Such inference can help us better understand the correlations
among urban properties. Recent work [23] has shown that the taxi
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volume could be used as a similarity measure between regions.
Through the similarity measure from traffic flows, we are able to
employ the target variable of relevant regions to improve the predi-
cation accuracy. The intuition is that a large volume of flow from
region A to region B indicates that the properties of A and B should
be more relevant, and thus we could use one to predict the other.
Although the intuition seems straightforward, there are some is-
sues with it. Consider the example in Figure 1. On the left, there is
no significant flow between two solid blue circles. However, since
they share a lot of common neighbors, it is reasonable to assume
they are relevant. On the right, the solid blue circle is a hub with
strong connections to other regions. However, the hub could be
a downtown area and play a different role compared with other
regions.

Figure 1: Each node is a region. The edge represents a signif-
icant amount of taxi flow between two regions.

The example above motivates us to account for the structural in-
formation of mobility flow graph. Graph embeddingmethod [17, 20]
can be one possible solution to model such structural information.
A good region representation learned from mobility flow graph
may help us better capture the relationships between regions and
thus the correlations can be used to improve the inference model.

However, utilizing taxi flow data to learn the representations
of regions is non-trivial. In literature, a transition matrix has been
frequently used to represent mobility flow data [15, 18, 27, 28].
In this transition matrix, a region i can be represented by an n-
dimensional vector, where the j-th element in the vector indicates
the traffic volume from region i to j (out flow) or from region
j to region i (in flow). However, such a representation does not
consider the temporal dynamics. For example, the flow volume from
region A to downtown might be the same as that from region B to
downtown. Without considering the temporal dynamics, we cannot
differentiate A and B w.r.t. downtown. However, the flow from A to
downtown might mostly be morning transitions whereas the flow
from B to downtown happens in the evenings. Downtown region
might function as a working place for people living in RegionA but
function as an after-work entertainment region for people working
in region B. So A and B should be different in their presentations
since they have different relationships with downtown region.

To consider the temporal dynamics, we could construct a tensor
by adding a time dimension in addition to the transition matrix [26].
However, such a tensor does not capture the multi-hop transitions
between regions. For example, there could be strong flow from
residential area A to working area B in the morning, and then
from working area B to restaurant area C in the evening. This
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indirect transition relationship between the region A and C cannot
be captured in the pairwise transition matrix.

We propose to learn representations of regions by adapting re-
cent embedding techniques, which have demonstrated successful re-
sults in word embedding [9–11, 16] and graph embedding [8, 17, 20].
However, the mobility flow data input are quite different from those
data. The key challenge lies in how to generate a meaningful con-
text for a region using the mobility flow data, in a similar way to the
sentence context for word embedding or the neighbor context for
graph embedding. Another challenge lies in the data sparsity. Even
though we have a huge mobility dataset, the data follow a long-tail
distribution w.r.t. regions. We could still have no information for
some remote regions at certain times such as midnight, and thus it
is difficult to learn their corresponding representations.

We propose a region embedding method by considering both
temporal dynamics and multi-hop transitions. We define a flow
graph, where each vertex represents one region within a certain
time interval and edges represent the transition flow between two
regions at different time intervals. The structure encodes both tem-
poral dynamics and multi-hop transitions. To further address the
sparsity issue, we define a spatial graph, and learn the embedding
jointly on the flow graph and the spatial graph. The spatial graph
captures the geographical adjacency among regions and comple-
ments the flow graph.

In experiment, we evaluate our embedding methods on three
prediction tasks. The proposed embedding method is shown to
consistently outperform existing methods. In order to interpret the
semantic meaning of learned embeddings, we conduct a quantita-
tive analysis on taxi and POI data, and also give a case study on the
embedding visualizations.

To summarize, the key contributions of this paper are:
• We study a generalized inference problem in the urban setting.
We propose to learn region embedding from mobility flow data
to enhance the inference model.

• In order to incorporate both temporal dynamics and multi-hop
transition and also to address the sparsity issue, we propose to
jointly learn the embedding from the flow graph and the spatial
graph.

• We validate our method through extensive experiments on mul-
tiple datasets.
The rest of this paper is organized as follows. Section 2 gives the

motivation of learning region embeddings. Section 3 presents the
formal definition of our problem. Section 4 introduces the dynamic
embedding method in detail. The experiment results are given in
Section 5. Section 6 summarizes related work. Finally, we conclude
in Section 7.

2 PRELIMINARY
In this section we first present the generalized inference model,
and then introduce our empirical observations on the relationship
strengths measure.

2.1 Generalized Inference Model
The generalized inference model is a typical regression task to study
the urban dynamics from various data sources. Given a set of K
non-overlapping regions R = {r1, r2, · · · , rK }, we are interested in

estimating the target variable for every region, denoted as yi for
region ri . We only have observations of target variables on a subset
of regions. However, we observe some auxiliary features for all of
the regions, such as the demographics and average income. These
auxiliary features are denoted as Xi ∈ Rd for region ri , where d is
the dimension of auxiliary features.

To predict the target variable, we use the following generalized
regression model

yi = α · Xi + β
∑
j ∈Ni

sim(i, j) · yj + γ , (1)

where α , β , and γ are parameters of the regression model. The term∑
j ∈Ni sim(i, j) ·yj accounts for the propagation effect of neighbor-

ing regions of ri , where Ni is a set of neighboring regions of ri
and sim(i, j) measures the relevance of region pair ⟨ri , r j ⟩. The rel-
evance function sim(i, j) is usually defined with extra information,
such as the spatial information.

It is the relevance function sim(i, j) that allows us to generalize
the base model. For example, a straightforward definition with

hard boundary is sim(i, j) =
{

1 if ri ∈ Nj ,
0 otherwise, where Nj is the

set of k-nearest neighbors to region r j . In order to provide a more
flexible way to control the relevance of neighbors, a soft version
of the relevance function could be defined with a spatial distance
measure as sim(i, j) = 1

d (i, j) , where d(i, j) is the distance between
the centroids of two regions. The intuition is that the closer two
regions are, the more relevant they are.

As newer type of data is available, such as the taxi commuting
data, the relevancemeasure can be defined accordingly as sim(i, j) =

f (j,i)∑
p∈Ni f (p,i)

, where f (j, i) is the amount of flow from r j to ri . Recent
work from Wang et al. [23] employs this definition and brings taxi
flow feature into the model. The prediction model becomes

yi = α · Xi + β1 ®wд
T ®y + β2 ®wf

T ®y + γ , (2)

where ®wд is the reverse distance weighting vector, ®wf is a weighted
taxi flow vector, and ®y is the target variables of all other regions.
Moreover,Wang el al. [23] verifies that negative binomial regression
is preferable to linear regression for predicting non-negative yi . In
the rest of this paper, we use the negative binomial regression as
our generalized model, i.e.

yi = exp(α · Xi + β
∑
j ∈Ni

sim(i, j) · yj + γ ). (3)

2.2 Empirical Study with Urban Data
To verify the taxi flow can serve as a good relevance measure,
we first make some observations with crime data and taxi data in
Chicago. For every pair of regions ⟨ri , r j ⟩, we plot their crime rate
differences against the flow volume f (i, j) in Figure 2.

Overall, the blue points in Figure 2 validate the intuition of
adding taxi flow into prediction model in Equation (2). However,
we notice that there are many red region pairs do not follow this
intuition. The reason is that the downtown region is contained in
those pairs. Chicago downtown region has the highest crime rate,
and there is a significant amount of traffic between downtown and
other regions.
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Figure 2: The crime rate difference vs. traffic flow volumes
for every pair of regions ⟨ri , r j ⟩. Points forming the blue tri-
angle shape indicate that the larger the flow between region
ri and region r j is, the difference between their crime rates
is smaller. The red point denotes a pair of regions with one
region being the downtown area.

The observation above motivates us to look beyond the traffic
volume to determine the relevance measure. As shown in the Fig-
ure 1, if we account for the structural information of mobility flow,
the downtown is a popular hub, which differentiates itself from
most of other regions. The graph embedding method is therefore
a sound solution to estimate region relevance by modeling such
structural information.

3 PROBLEM DEFINITION
We define the region representation learning problem as a joint
embedding learning problem on two different graphs — flow graph
and spatial graph.

The input data consist of mobility data and spatial information
of the city. The mobility dataset containing n trips is denoted as
Γ = {γ i }. Each trip γ has the format ⟨ls , le , ts , te ⟩, where ls and le
are the starting and ending location coordinates (i.e., latitude and
longitude), and ts and te are the starting and ending time of the trip
respectively. The spatial information of the city is a set of K non-
overlapping regions, denoted as R = {r1, r2, · · · , rK }. The regions
could be defined as the administrative boundaries (e.g. tracts and
community areas) or partitioned by the road network [26]. The
spatial boundary of each region ri is given as well. To simplify the
temporal dynamics, we use relative timestamps within one day
T = {1, 2, · · ·T } with fixed time intervals, such as 1 hour.

The same region at different timestamps bears different functions,
and thus the embedding could be different. We use time-enhanced
vertices to differentiate the same region at different timestamps in
our heterogeneous dynamic graph.

Definition 3.1 (Time-enhanced vertex). Each vertex in our graph
is denoted as vti , which represents the region ri at time t . We call
this time-enhanced vertex and our method will learn embedding
representation for each such vertex. The set of time-enhanced ver-
tices is denoted asV , which contains K ·T vertices, where K is the
number of regions, and T is the number of timestamps.

Given a set of vertices, there are two kinds of relations we want
to capture. The first type of relation is derived from the mobility
flow among those regions, which is formulated into the flow graph
Gf . The second one is the spatial adjacency, which is defined by

the spatial graph Gs . The intuitions and definitions of these two
graphs will be introduced in detail in Section 4.

Our method learns the representations from both graphs simul-
taneously. The formal definition of our problem is as follows.

Definition 3.2 (Dynamic mobility graph embedding). Given the
flow graph Gf and spatial graphGs , we aim to learn a vector rep-
resentation uti ∈ Rd in a low dimensional space for each vertex
vti ∈ V , i.e. learning a mapping f : V → Rd . In the d-dimensional
embedding space, both the mobility flow relation and spatial adja-
cency are preserved.

With the region embeddings, we define the relevance measure
by their dot product, i.e. sim(i, j) = uTi uj .

4 METHOD
In this section, we give the design motivations and formal defini-
tions of the flow graph and the spatial graph. Following the graph
definitions, we describe the embedding learning objective. At last,
we present the optimization techniques to learn the embedding.

4.1 Flow Graph
The same region at different time may carry different functions.
Take the downtown area as an example, which has mixed point-
of-interests distribution. In the morning, people go to downtown
mostly for work. Therefore, in the morning the downtown area acts
as a professional area. However, at night there are also a significant
amount of people traveling to downtown for food and drink, and
the downtown acts as an entertainment area.

The aforementioned example motivates us to learn different
embeddings for the same region at different times. Follow this
intuition, we design the flow graphGf as a layered graph, shown
on the left of Figure 3, and formally defined as follows.

Definition 4.1 (Flow graph). The flow graph is a layered graph
defined as Gf = (V,Ef ). The verticesV = {vti } is the set of time-
enhanced vertices. Vertices with the same timestamp are grouped
into one layer, and there are T layers in total. The edge set Ef only
contains one type of edges {eti j }, where e

t
i j connects vertices v

t
i

and vt+1j from two consecutive layers. The edge weight f ti j is the
volume of mobility flow.

The flow graph models the mobility pattern of crowd in the
city. More specifically, we can sample a lot of paths from the flow
graph to represent human trajectories. Each path consists of a
sequence of regions, whose timestamps are monotonically increas-
ing with a fixed step of 1. The length of each path is bounded by
the number of timestamps in the graph. And each path seman-
tically refers to one trajectory of a individual. For example, one
possible path is ⟨home, 8:00 am⟩ → ⟨office, 9:00 am⟩ → · · · →
⟨office, 6:00 pm⟩ → ⟨bar, 7:00 pm⟩.

However, there are three issues with a path sampled from the
flow graph. First, the flow graph does not deal with the fact that
people travel to a region and stay there. For example, in the left-
most graph in Figure 3, the edge between v11 (node of region r1 at
time t = 1) andv21 (node of region r1 at time t = 2) is missing, which
means there is no trip observed transiting within the same region,
but there could be people staying in that region. Second, the flow
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Figure 3: The layered structure of a flow graph (left), a spatial graph (middle), and the combined graph (right). Each row rk
represents one region. Each column t is the timestamp, and all vertices within at the same timestamp (the dotted rectangle)
form one layer of the graph. Each vertexvti is a time-enhanced vertex refers to region ri at time t . On the left, the solid blue edge
refers to the taxi flow, and edge weight is number of taxi trips. In themiddle, the dotted red edge refers to the spatial adjacency,
and the edge weight is inversely correlated with the distance between region centroids. From the flow graph, vertices v21 and
v23 have similar embeddings because they have similar in-flow from v13 and similar out-flow to v32 and v33 . However, with flow
graph alone, we are not able to learn the embeddings forv11 andv

3
1 , due to lack of traffic flow. The spatial graph provides spatial

information, which makes it possible to learn an embeddings for v11 and v
3
1 .

graph suffers data sparsity issue. If there is no traffic flow going
in/out certain region during a time interval, then it is impossible
to learn the embedding of this region at that time. Third, the flow
graph cannot recognize the same or nearby region across different
time slots. More specifically, the flow graph treats all K ·T vertices
as independent regions. However, it is very likely that the same
region in different time slots are strongly correlated. Recall the
residential area example, where the large volume of in-coming flow
at night is caused by the large volume of out-going flow in the
morning.

4.2 Spatial graph
To address the issues with the flow graph, we propose a spatial
graph, which is defined as:

Definition 4.2 (Spatial graph). The spatial graph is a layered graph
as well, denoted as Gs = (V,Es ). The vertices set V is exactly the
same as that of flow graph. The edge set Es also only contains
edges connecting two vertices from consecutive layers. The edge
weight дti j represent the spatial similarity of two regions, which is
inversely correlated with distance.

The spatial graph shares the same structure and exactly the same
vertices with the flow graph. The only difference is that the edges
in spatial graph are constructed differently. The basic assumption
behind the spatial graph is that human mobility are bounded by
space. When there is no transition observed, the probability that
people appeared at a different region is inversely correlated to the
distance they need to travel. Therefore, two regions that are close
in space should have stronger correlation in their embeddings. In
spatial graph, the edges ei j refers to the spatial similarity between
regions ri and r j . The edge weight дi j is inversely correlated with
the distance, formally defined with exponential decay function [13]
as follows

дi j = exp(−C · di j ), (4)

where di j is the spatial distance between the centroids of two re-
gions. We should notice that the spatial graph is static over time,
therefore, all edges between any two consecutive layers are actually
the same. C is a parameter controls the exponential decay rate of

the distance. LargerC means faster decay, which makes regions far
away have little correlation with current region.

The design of spatial graph, shown in the middle of Figure 3,
naturally incorporates the spatial adjacency. This spatial adjacency
could be regarded as a transition cost, which helps us to estimate
the stay probability. Even more, the spatial adjacency enables the
embedding learning for regions without any taxi flow, which solves
the sparsity issue. Lastly, the spatial adjacency identifies the same
region across different timestamps, because the edge between a pair
of time-enhanced vertices representing the same region always has
the maximum weight.

4.3 Heterogeneous Graph Property
Combining the flow graph and spatial graph together, we get a
heterogeneous graph that represents the crowd mobility pattern on
the right of Figure 3. In this heterogeneous graph, one path conveys
more information about crowd mobility pattern than that from the
flow graph. Now it is possible for a path to capture both transi-

tion and stay, such as ⟨home, 8:00 am⟩ → ⟨office, 9:00 am⟩
stay
−−−−→

⟨office, 10:00am⟩ → · · · → ⟨office, 6:00 pm⟩ → ⟨bar, 7:00 pm⟩.
This heterogeneous graph has two properties that meet the re-

quirements of our problem. (1) The graph is still a temporal graph,
which enables us to learn dynamic embeddings for each region. (2)
In the heterogeneous graph, the multi-hop temporal dependency is
captured within each path. The multi-hop temporal dependency is
important to differentiate region functions. For example, at 6:00 pm
we observe same amount of flow going into region A and B, which
makes it difficult to differentiate the function of A and B. But if we
know that in the morning, there is a large amount of flow going out
of A, while almost no flow going out of B, then A is more likely to
be a residential area, whereas B is more likely to be an after-work
entertainment region.

4.4 Embedding Learning Objective
In order to capture two properties mentioned above, we propose to
use the embedding technique to learn the representation of each
region. The reason is that graph embedding explicitly captures the
multi-hop dependency. Meanwhile, the baseline method for graph
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representation learning, such as directly using the in/out flow as
vector representation or matrix factorization, is not able to capture
the multi-hop correlation.

4.4.1 On Single Graph. The embedding learning process on the
flow graph and the spatial graph are exactly the same, due to the fact
that both graphs have similar structure. Without loss of generality,
we explain the learning process on the flow graph.

First we define a path as Pi = vi1vi2 · · ·vim , whose starting
and ending vertices are vi1 and vim respectively. We omit the time
superscript, because the time slots for the vertices of path P must
be monotonically increasing with fixed step size 1. And we denote
the relation that a path contains a vertex vti as vti ∈ P . With the
definition of path, we further define the set of paths containing
vti as P(vti ) = {Pi |vti ∈ Pi }. The context of one vertex vti , which
refers to all the other vertices that are multi-hop neighbors of vti ,
is defined as C(vti ) = {vc |∃Pi ∈ P(vti ),vc ∈ Pi }⧹{vti }.

We adopt the skip-gram model [9] to learn the embedding uti
for each node vti . Formally, we estimate

pf (vc |vti ) =
exp(uti

T uc )∑
vi∗ ∈C(v ti ) exp(u

t
i
T ui∗ )

, (5)

where vc is one vertex in vti ’s context C(v
t
i ), uc and uti are the

embeddings of vc and vti respectively.
The empirical conditional probability p̂f (vc |vti ) is estimated by

the volume of mobility flow in the flow graph. More specifically, if
vc is within the context of vti , there must be at least one path from
vc to vti or a path from vti to vc . Without loss of generality, we
assume one of the path is from vti to vc withm vertices, denoted as
Pi , where vi1 = vti and vim = vc . First we estimate the transition
probability of two adjacent vertices. Then the empirical probability
p̂f (vc |vti ) is estimated from this transition probability.

The transition probability between two directly connected ver-
tices vtik and vt+1ik+1

is given by

p(vt+1ik+1 |v
t
ik ) =

f tik ik+1∑
vj∗ ∈N (v ti ) f

t
ik j∗
, (6)

where N (vti ) refers to the direct next-hop neighbors of vertex vti ,
and f tik ik+1

refers to the weight of edge etik ik+1 in the flow graph.
Therefore, the transition probability from vi1 to vim through Pi is

p(P |vi1 ) = p(vim ,vim−1 , · · · ,vi2 |vi1 )

=

m∏
k

p(vik |vik−1 ,vik−2 , · · · ,vi1 ) (7)

Due to the Markov property, Equation (7) becomes

p(P |vi1 ) =
m∏
k

p(vik |vik−1 ), (8)

The empirical conditional probability p̂f (vc |vti ) is

p̂f (vc |vti ) =
∑
Pi ∈P

p(Pi |vti ), (9)

where P is the set of all paths starting atvti and ending atvc . Finally,
we can learn the embedding by minimizing the difference between

pb = 0.2

pc = 0.8

A

B

C

Vertex Index Probability pi Alias Ki
B 0 0.4 C
C 1 1.0 -

Constant time sampling process:
1. Draw uniform random number x ∈ [0, 1).
2. Identify the index of row i = ⌊nx⌋.
3. If x > pi , return Ki . Otherwise, return i .
Example 1: x = 0.45, i = 0. Since x > p0, return C.
Example 2: x = 0.35, i = 0. Since x < p0, return B.

Figure 4: The aliasmethod explanation. On the left, we want
to draw the next vertices ofA. The probability table and alias
table are created on the top right. The bottom right shows
the constant time sampling process from the alias method.

two distributions pf (vc |vti ) and p̂f (vc |v
t
i ). The objective is

Of = D(pf (·|·), p̂f (·|·)), (10)

where D is the distance function for two distributions, and one
commonly used function could be the KL divergence.

The embedding learning objective of spatial graph is similar to
the flow graph. We minimize the difference between the embedding
distribution and empirical distribution, which is

Os = D(ps (·|·), p̂s (·|·)). (11)

4.4.2 On Heterogeneous Graph. In order to learn our embed-
ding on two graphs simultaneously, we combine Equation (10) and
Equation (11), and the joint learning objective is

O = Of +Os = D(pf (·|·), p̂f (·|·)) + D(ps (·|·), p̂s (·|·)). (12)

4.5 Embedding Learning Optimization
4.5.1 On Single Graph. Directly optimizing the objective in

Equation (10) and Equation (11) is computationally expensive, due
to two reasons.

(1) To calculate the conditional probability pf (·|vti ) in Equa-
tion (5), for eachvti it requires the summation over the entire
set of vertices. Therefore, the overall complexity isO(K2 ·T 2),
where K ·T is number of vertices.

(2) To estimate the empirical conditional probability p̂f (vc |vti )
in Equation (9), for every pair of vertices we have to sum
over all paths Pi among them, which is exponential to the
number of vertices in one layer.

To address the first problem, we adopt the negative sampling
approach proposed in [10], which samples multiple negative pairs
from a noise distribution to estimate one true pair. The objective is
given by

logσ (uti
T uc ) +

s∑
q
Evq∼Pn (v ti )

[
logσ (−uTq uc )

]
, (13)

where σ (x) = 1
1+exp(−x ) is the sigmoid function, Pn (vti ) is the noise

distribution, and s is the number of negative samples. The Equa-
tion (13) is used to replace every logp(vc |vti ) term during the skip-
gram optimization.

To address the second problem, we use the graph sampling
method to estimate the empirical probability p̂(vc |vti ). More specif-
ically, we generatem paths from the graph via random walk. Due
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to the special structure of our layered graph, the time index of the
sequence must be monotonically increasing with fixed step size 1.
Given thatm is large enough, we could use the co-occur frequency
count from those random walks to estimate p̂(vc |vti )with sufficient
accuracy.

The random walk boils down to next-vertex sampling accord-
ing to the edge weights. Since the random walk is conducted on
a weighted graph, at each vertex, we sample the next vertex ac-
cording to the out-degree distribution, which could be expensive.
The straightforward method is to convert each weighted edge into
an interval within the range of [0,wsum ), where the wsum is the
sum of out degree at current vertex. The sampling process is that
first generate a uniform random number x ∈ [0,wsum ), and then
find the interval that x maps into. Therefore, this next-vertex sam-
pling method takes O(K) time, where K is the number of vertices
in one layer, which is also the upper bound of number of outgoing
edges from current vertex. Since we are generatingm paths, we
have to conductm ·T next-vertex sample process, where T is the
upper-bound of the path length. The overall complexity would be
O(m ·T · K).

We further boost the next-vertex sampling process with alias
method [22]. The advantage of alias method is that it is possible to
repeatedly sample next edge with constant time, after preprocessing
outgoing edges and save the information. More specifically, the
alias method creates two tables for the next edges as shown in
Figure (4). The alias method makes the path sampling significantly
faster, because in our path sampling process we repeatedly sample
on each vertex. For each vertex, the initialization of alias tables take
O(K), where K is the upper bound for the number of next vertex.
Therefore, the overall initialization takes O(K ·T · K) = O(K2 ·T ),
where K ·T is the number of alias tables need to create. The overall
sampling process takes O(m ·T ). Sincem ≫ K , it is safe to assume
thatm > K2, and then the overall complexity isO(K2 ·T +m ·T ) =
O(m ·T ). The experimental comparison of alias method with the
simple method is described in Section 5.2.3.

4.5.2 On Heterogeneous Graph. The sampling-based method
above can be easily applied on the heterogeneous graphs to learn
the joint embedding. We conduct random walk on both graphs to
generate path simultaneously. Then we feed all the paths to the
skip-gram neural networks model to learn a joint embedding for
each vertex.

4.6 Discussion: Path Sampling
Here we draw a connection between our graph sampling-based
optimization technique and word2vec [9] in language modeling
method. The goal of word2vec is to build vector representations
of words using probabilistic neural networks. This idea could be
re-purposed to model the graph structure as well [17], due to the
power law property in both the degree distribution in a graph and
the word frequency distribution in natural language.

We regard the set of vertices in the graph as a special corpus,
and each vertex is a word. The path sampled from the weighted
graph via random walk can be thought of sentences. The multi-hop
neighbors of a vertex in the path is similar to the word context.
Therefore, estimating the neighboring vertices of a given vertex is
analogy to the skip-gram language model [8].

5 EXPERIMENT
In this section, we first describe datasets and experiment settings.
Then we evaluate the effectiveness and efficiency of proposed em-
bedding method with several prediction tasks. Finally, we interpret
the semantic meaning of the learned embedding with both quanti-
tative analysis and case study.

5.1 Settings
5.1.1 Data description. We study the urban dynamics at com-

munity area (CA) level. A community area is a predefined adminis-
trative area in the city of Chicago. The geographic boundary infor-
mation is available through US census survey [3]. The following
urban data are collected and used in our evaluation.

Demographics data at community area level is made public by
the US census bureau [3]. The demographic features mainly cover
the following aspects of a community area: total population, popu-
lation density, poverty, residential stability, and ethnic diversity.

Point-Of-Interest (POI) data is obtained through Foursquare
API [19]. It contains more than 112, 000 POI records for Chicago.
Each POI record provides venue name, category, number of check-
ins, and number of unique visitors. We use the POI category distri-
bution information of each region to measure the region functions.
There are 10 major POI categories including arts & entertainment,
education, event, food, nightlife, outdoor & recreation, professional,
residence, shops and travel.

Taxi data [6] in Chicago from 2013 to 2015 are used to construct
themobility flow graph. There are over 86million taxi trips recorded
over the three years, which is roughly 2.4 million trips per month.
For each trip, we have the following information available: pick-up
and drop-off dates and locations. Due to privacy concern, in this
dataset, all timestamps are rounded to closest 15 minute marks, and
all locations are mapped to the center of census tracts.

Crime data is publicly available on Chicago Data Portal [14],
which contains more than 5 million crime incidents from 2001 to
current day. The incident date, location, and primary type of each
crime incident are recorded.

House price data is obtained fromZillow real estatewebsite [29].
We collect the sale price, floor size, latitude, and longitude informa-
tion for over 45, 000 real estates that were sold within 2 years in
the city of Chicago.

In order to evaluate and interpret our embedding results, we
predict the following three target variables for each community
area.
• Crime rate, which is crime incidents count per 10,000 population.
• Average personal income in dollar.
• Average house price with a unit of dollar per square foot.

5.1.2 Methods for comparison. For each prediction task, we
follow the generalized regression framework in Equation (3). We
use the state-of-the-art method in [23] as a base model, which does
not employ the embedding technique to calculate relevances. Since
the base model directly employs the traffic volume and inverse
spatial distance as relevance measure, we denote it RAW in the rest
of experiments.

We name our embedding method as heterogeneous dynamic
graph embedding (HDGE). This proposed dynamic embedding
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technique also applies to single flow graph or spatial graph, which
are called DGEf low and DGEspatial respectively. We set the em-
bedding dimension as 8 for all methods. We compare HDGE with
two alternative embedding methods. First, we introduce a straight-
forward baseline approach for flow graph modeling, called slotted
graph. Similar to flow graph, the slotted graph also accounts for the
temporal dynamics. However, the slotted graph models the mobility
flow for each time slot independently.
• Matrix factorization (MF ) is a conventional method for dimen-
sion reduction. In order to get dynamic vector representations,
the matrix factorization method is used to decompose the adja-
cency matrices of slotted graphs.

• LINE [20] is a graph embedding method that learns embedding
on a weighted graph to encode both first and second order prox-
imity. Applying LINE on the slotted flow graph also leads to an
alternative temporal embedding.

5.1.3 Evaluationmetrics. The dynamic embeddingmethod learns
different embeddings for different time slot. Within each time slot,
we use leaned embeddings to calculate the relevance measures and
evaluate the regression model with leave one out setting. The model
performance is evaluated by mean relative error and mean absolute
error:

MRE =
1
T

T∑
t=1

∑n
i |yit − ˆyit |∑n

i yit
MAE =

1
T

T∑
t=1

n∑
i

|yit − ˆyit |,

where yit is the ground truth value for target variable of region i
at time slot t , and ˆyit is the estimate.

It is worthy mentioning that among all three target variables
only crime rate presents daily periodicity. For average personal
income and real estate price, the value of the same region does not
change within one day, i.e. ∀t ∈ T, yit = yi .

5.2 Evaluations
5.2.1 Feature Selection. For each predication task, we have four

types of features available, which are demographic features (D),
POI features (P), geographical feature (G), and taxi flow feature (T).
In this section, we aim to identify the best feature combinations for
each prediction task. We use the base model RAW for this purpose.

Table 1: Crime rate prediction with RAW from 2013 to 2015.
The MAE unit is crime count per 10,000 population.

Year 2013 2014 2015
Features1 MAE MRE MAE MRE MAE MRE
D+P 15.03 0.318 13.26 0.317 7.31 0.335
D+P+G 15.54 0.329 13.75 0.326 7.46 0.337
D+P+T 14.52 0.308 12.79 0.307 7.15 0.322
D+P+G+T 14.92 0.316 13.15 0.316 7.35 0.332

1 D – demographic features, G – geographical influence, P – POI features, T – taxi
flow feature.

The crime rate prediction results of RAW method with different
feature combinations are shown in Table 1. We only show the
prediction results from year 2013 to 2015, because only in those
years we have both taxi flow data and crime incident data. From
Table 1, we observe that the best crime rate prediction is achieved by
using only three types of features, i.e. demographics, POI, and taxi
flow. Adding geographic features does not improve the prediction

accuracy. This observation is actually consistent with previous
work [23].

Table 2: Average personal income andhouse price prediction
with RAW . The MAE unit of personal income is dollar. The
MAE unit of house price is dollar per square foot.

Data Income House Price
Features MAE MRE MAE MRE
D+P 15304 0.253 39.87 0.233
D+P+G 16905 0.279 41.40 0.242
D+P+T 15433 0.255 39.28 0.229
D+P+G+T 15127 0.250 40.728 0.238

The average personal income and house price prediction results
of RAW are shown in Figure 2. When making income prediction,
we eliminate related features from the demographics features. To
make fair evaluation, we try our best to align the time window of
features and target variables. More specifically, the income census
data is collected in 2010, and we use taxi flow in the closest year
as features. The house price data is from 2015 to 2017, and the taxi
flow in 2015 is used to predict house price.

From Table 2, we observe that the best feature combination for
income prediction is to involve all four types of features. Mean-
while, the best feature combination for house price prediction is
demographics, POI, and taxi flow.

In all three prediction tasks, the taxi flow features are consistently
proven to effectively improve the prediction accuracy.

5.2.2 Embedding Evaluation. In this section, we evaluate the em-
bedding results by calculating the relevance measures with learned
embeddings. Without loss of generality, we define the relevance
measure in Equation (3) by their dot product, i.e. sim(i, j) = uTi uj .
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Figure 5: Crime rate prediction MAE (left) and MRE (right)
with dynamic mobility flow embeddings.

TheMAE andMRE of crime rate prediction in different years are
shown in Figure 5. All methods use D+P+T feature combinations,
and the MRE of RAW (green bar) is from the highlighted row in
Table 1.

We could see that DGEf low consistently has the best perfor-
mance. There are two reasons that DGEf low is able to outperform
RAW . First, DGEf low employs the multi-hop structural informa-
tion, which potentially enables the crime to be propagated for more
than one hop. Second, DGEf low captures the temporal transition
information as well. LINE andMF have worse performance than
DGEf low , mainly because embeddings are learned on the inde-
pendent slotted graph, which does not account for the temporal
transition information.
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Table 3: Average personal income andhouse price prediction
with embedding methods.

Data Income House Price
Features D+P+G+T D+P+T
Method MAE MRE MAE MRE
RAW 15127 0.250 39.28 0.229
MF 16674 0.2756 39.83 0.233
LINE 15534 0.2567 40.438 0.236
DGEf low - - 38.95 0.226
HDGE 14740 0.2436 - -

We show the embedding methods comparison of average income
and house price prediction in Table 3. The income prediction uses
the feature combination D+P+G+T, while the house price predic-
tion uses the feature combination D+P+T. Similarly, we observe
that the proposed HDGE and DGEf low are able to learn a better
relevance scores respectively, and thus improve the RAW method.
The other embedding methods MF and LINE, however, lead to
a worse performance. This verifies that the proposed flow graph
design is necessary to account for the relevance among regions.

5.2.3 Running Time. We validate the performance gain of ap-
plying alias method for random walk sampling on weighted graphs.
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Figure 6: The running time of random walk sampling on
weighted graphs.

In order to validate the efficiency of alias method, we conduct
random walk sampling on two flow graphs. The first flow graph is
generated at community area level, while the second flow graph is
generated at tract level. The tract is a smaller administrative bound-
ary used for the census survey. There are 801 tracts in Chicago,
compared to 77 communities areas. The length of random walks
for both graph are bounded by 24. The number of sampled random
walks ranges from 500k to 10 million.

The running time is shown in Figure 6. The compared method
is called random interval, which is described in Section 4.5.1. It is
clear that the alias method consistently runs faster than the random
interval method. The alias table method has better performance
gainwhen the number of sampled randomwalks is large, comparing
the solid blue line and solid red line. The reason is that the alias
method has a fixed overhead to calculate the alias table for each
vertex. Also, the performance gain of alias method on a large graph
is bigger. The reason is that alias method reduce the next-vertex
sampling complexity from O(K) of the random interval method

to O(1), and a larger graph usually has larger K , and thus a larger
performance gain.

5.3 Interpretations
In this section we give semantic interpretation of the learned dy-
namic graph embedding. First, we show thatHDGE to some degree
account for the POI similarity among regions. Next, we use a case
study to intuitively explain the semantics captured by HDGE.

5.3.1 HDGE and POI. The POI data reflect different functions
of urban areas [26], which is a candidate measure of similarity
among regions. Our hypothesis is that to certain degree the HDGE
accounts for the POI similarity among regions, even though the
HDGE learning process does not involve any POI data at all.

Due to lack of ground truth, we conduct an unsupervised in-
formation retrieval experiment to compare different embedding
methods. Each region is used as a query, and the goal is to rank
other regions according to their similarities to the query region.
The POI similarity ranking is used as the ground truth. The qual-
ity of various embedding methods are evaluated with the nDCG
measures of corresponding rankings.

We use normalized discounted cumulative gain (nDCG) as eval-
uation measure. Formally, the discounted cumulative gain (DCG)
is defined as DCG@k =

∑k
i=1

r eli
log2(i+1)

, where the relevance reli
is derived from POI similarity. The nDCG is the DCG normalized
by the idea DCG (iDCG), i.e. nDCG@k = DCG@k

iDCG@k , where iDCG is
the DCG of the best ranking. Higher nDCG@k value means better
quality of the mobility flow embedding similarity.

We conduct this experiment at tract level, and there are 801
tracts in Chicago. We set the embedding dimension as 20 for all
methods, and divide one day into 8 3-hour time slots. To make fair
comparison, we sample a subset of tracts that all methods are able
to learn embeddings, which results in a set of 419 tracts.
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Figure 7: The nDCG@k plot for various methods with the
pairwise similarity evaluation. k is the number of regions
to retrieve.

For each embedding method, we report the average nDCG@k
across all tracts over all timestamps. The results are shown in Fig-
ure 7. From the results we made the following several observations.

Overall, the HDGE method significantly outperform other em-
bedding methods, such as MF and LINE. This verifies that the
design of flow graph accounts for the POI similarity better than the
other embedding methods. The reason is that our flow graph not
only consider the temporal dynamics, but also draws connection
across different timestamps, which is missing in the slotted graph.
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(b) The 2D embedding visualization of selected community areas during different hours.

Figure 8: Case study with 2D visualization. We pick 12 communities areas, whose positions in the city are shown in (a). The
2D embeddings from different time are visualized in (b). The 12 communities fall in 4 groups: downtown (red), airport (cyan),
residential areas (blue), and residential areas with socio-economic issues (green).

It is interesting to notice that when k is small, the DGEspatial
gives the best performance, and the performance decreases as the k
increases. The reason is that spatially adjacent tracts usually share
similar POI distributions. Therefore, given a query tract, a spatial-
based method could easily find adjacent tracts as the results for
the top 5 other tracts that has the most similar POIs. However,
when k is larger than 5, the spatial distance based search does
not dominate the results anymore, and thus the performance of
DGEspatial decreases.

Although we cannot draw conclusion that HDGE is positively
correlate with POI information. This experiment concludes that
HDGE design is better than other embedding methods.

5.3.2 Case Study. To intuitively demonstrate the semantics of
HDGE, we learn a 2-dimensional embedding with HDGE method,
and visualize 12 hand-picked community areas that represent four
different types of areas.

The locations of these 12 community areas are shown in Figure 8a.
In Figure 8a, the blue CA 13, 14, 15, and 16 in the north side are
densely populated residential areas of the city, where the resident
demographics are mostly middle and upper-class. The red CA 8, 32,
and 33 locate in downtown, with many commercial, cultural, and
financial institutes. In the south of Chicago, the green CA 44, 45,
47 and 48 have different population demographics from the north
side. We also plot the Chicago airport, i.e. CA 76, as cyan region. As
shown in the map, the Chicago airport locates in the far northwest
side of the city, however, it is noteworthy that there are a significant
amount of taxi flow commuting between airports and the rest of
the city.

In Figure 8b, we visualize the 2-dimensional embedding of these
selected regions from different hours. Particularly, we pick three
hours in the morning traffic peak, three hours in the afternoon
peak, and two hours at night.

As expected, we observe that spatially adjacent community areas
are close in the HDGE embedding space. Also, mobility flow helps
to identify similar regions beyond spatial adjacency, which explains
why the CA 76 is close to downtown area.

An interesting case is observed on CA 47. From the visualization
we notice that region 47 has a dramatic change from day to night.
During the day time, CA 47 is close to its geographical neighbors,
i.e. 44, 45, 48, while at night the embedding of CA 47 is far away
from most of the communities. After looking into the taxi trips, we
found that there is almost no traffic trip going in or out of CA 47 at
night. And the reason behind the extremely low taxi volume is that
CA 47 suffers from serious gang violence, so that people are trying
to avoid this area at night. In Table 4, we show the taxi flow and
crime rate of CA 47 compared to its neighbors.

Table 4: CA 47 suffers from serious gang-related violence,
and thus has much less traffic flows compared to its neigh-
bors. The total number of taxi in/out trips are in 2013. The
crime rate is gang-related crime count per 10,000 population
in 2013.

CA In Out Crime rate Crime rank
44 4099 5300 124 7
45 857 1611 112 9
47 221 287 185 1
48 1935 2848 72 26

6 RELATEDWORK
Mobility Data in Urban Problems. Mobility data has been used
to solve a wide spectrum of urban problems, such as air quality
inference [27], noise pollution estimation [28], real estate ranking
[7], and region function detection [15, 18]. In these existing works,
the transition matrix is the most frequently used to represent the
mobility flow data. However, the transition matrix ignores the
temporal information and the multi-hop transitions. To account
for the temporal dynamics, Yuan et al. [26] propose a tensor-based
framework to discover regions of different functions, which adds
a temporal dimension to the transition matrix. Still, the mobility
flow tensor can not capture the multi-hop transitions.



CIKM’17 , November 6–10, 2017, Singapore, Singapore Hongjian Wang and Zhenhui Li

Our method differs from the research mentioned above in how
we encode the mobility flow information. We try to encode the dy-
namic mobility flow into vector representations of regions through
a embedding method. The advantage of an embedding method
over the transition matrix is that the embedding method preserves
the global structural information. More specifically, the transition
matrix only preserves the pairwise similarity, while the graph em-
bedding is able to make use of higher order proximity and encode
such information into the region representations.

Embedding in Heterogeneous Network. Our method is re-
lated to the methods of graph embedding and dimension reduction
in general. Some typical methods include multidimensional scal-
ing (MDS) [5], IsoMap [21], Laplacian Eigenmap [2], and graph
factorization [1]. These methods find the embedding of a graph
by representing the graph as an affinity matrix and then applying
matrix factorization. However, the objective of matrix factorization
does not necessarily preserve the global network structure, because
the matrix factorization only captures the pairwise first-order prox-
imity.

Inspired by the word2vec method from the natural language pro-
cessing field [9–11], which learns continuous vector representations
for words, recent research established an analogy for networks by
representing a network as a document [8, 17, 20]. One could sample
network by random walk to get sequences of vertices and learn a
continuous representations for each vertex in a low-dimensional
space.

When there are multiple types of vertices and edges in the net-
work, the graph embedding learning objective is different. Wang et
al. [24] proposed a word embedding method for linked documents,
which learns embedding for words, documents, and document la-
bels. Xie et al. [25] apply the heterogeneous embedding technique
in a location network to recommend locations.

Our embedding method is applied on a heterogeneous graph as
well, but it is still different from most existing works in heteroge-
neous network embedding. In our problem, we consider a dynamic
graph where the relations between the same pair of vertices are
changing over time. This new property presents new challenges in
embedding learning.

7 CONCLUSION
In this paper, a graph embedding method is proposed to uncover the
urban dynamics using mobility flow data. We define a flow graph
to incorporate both temporal dynamics and multi-hop transitions.
We also define a spatial graph to address the sparsity issue within
the flow graph. The dynamic region embeddings are jointly learned
from two graphs. With three inference tasks, we demonstrate the
effectiveness of our embedding method.
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