Interpreting Traffic Dynamics using Ubiquitous Urban Data
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ABSTRACT

Given a large collection of urban datasets, how can we find their
hidden correlations? For example, New York City (NYC) provides
open access to taxi data from year 2012 to 2015 with about half
million taxi trips generated per day. In the meantime, we have a
rich set of urban data in NYC including points-of-interest (POIs),
geo-tagged tweets, weather, vehicle collisions, etc. Is it possible
that these ubiquitous datasets can be used to explain the city traf-
fic? Understanding the hidden correlation between external data
and traffic data would allow us to answer many important questions
in urban computing such as: If we observe a high traffic volume at
Madison Square Garden (MSG) in NYC, is it because of the regular
peak hour or a big event being held at MSG? If a disaster weather
such as a hurricane or a snow storm hits the city, how would the
traffic be affected?

Most of existing studies on traffic dynamics focus only on traffic
data itself and do not seek for external datasets to explain traffic. In
this paper, we present our results in attempts to understand taxi traf-
fic dynamics in NYC from multiple external data sources. We use
four real-world ubiquitous urban datasets, including POIs, weather,
geo-tagged tweets, and collision records. To address the hetero-
geneity of ubiquitous urban data, we present carefully-designed
feature representations for these datasets. Our analysis suggests
that POIs can well describe the regular traffic patterns. In addition,
geo-tagged tweets can be used to explain irregular traffic caused by
big events, and weather may account for abnormal traffic drops.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; H.4.0 [Information
Systems Applications]: General
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1. INTRODUCTION

Traffic is the pulse of the city that impacts the daily life of mil-
lions of people. Traffic congestion can make drivers frustrated and
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also generate a lot of city noises and vehicle accidents. Therefore,
there has been a longstanding strong demand to understand and
forecast traffic under different scenarios. An insightful analysis on
traffic dynamics could lead to intelligent transportation systems that
make the city flow more smooth and make people’s life easier.
Modeling traffic dynamics, however, is very difficult as the traf-
fic varies significantly over space and time and it is impacted by
many factors simultaneously. To date, various approaches have
been proposed to model and to predict traffic [13]. But most of
these studies focus on how to predict traffic using historical traffic
data. For example, the traffic volume at 5 p.m. today will be high
because the traffic volume has always been high at 5 p.m. on week-
days; the traffic will increase at a location because nearby locations
are experiencing an increasing trend of traffic. Unfortunately, these
patterns fail to provide a semantic understanding of the traffic. For
many intelligent transportation applications, an ideal interpretation
typically involves contextual urban information and may be of the
following form: Traffic at location A is dominated by the daily rou-
tine commute at this place, location B has a significant traffic in-
crease when there is a local concert, and the sudden drop of traffic
at these locations on certain day is due to a heavy snow. Instead
of relying on the knowledge of local experts, we argue that such an
interpretation could be automatically learnt from the data.
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Figure 1: Using ubiquitous urban data to explain traffic.

Motivated by this goal, we propose to study a novel problem: in-
terpreting traffic data using external contextual urban data. More-
over, the big data era has brought us unprecedented urban data,
which enables us to take a systematic approach to address this prob-
lem. Take New York City for example. The city generates about
half million medallion taxi trips; all these data from year 2009 to
year 2015 are publicly available on www.nyc.gov under the Free-
dom of Information Law (FOIL). The NYC taxi data was first made
public in 2014. It is the first massive public traffic dataset which
contains extremely rich information about the urban dynamics in
NYC.

In the meantime, to understand such a large-scale traffic data,
several contextual urban data in NYC are being collected from dif-
ferent sources. For example, information about more than 380K



points-of-interest (POI) can be collected from FourSquare; people
generate about half million geotagged tweets per day in the city;
National Centers for Environmental Information provides daily cli-
mate information with 28 weather attributes collected from a mon-
itoring tower in Central Park; more than 769K vehicle collisions
from 2012 to today are available on NYC open data website (data.
cityofnewyork.us). Our key insight is that all these ubiquitous ur-
ban datasets could potentially be valuable signals to explain the
traffic dynamics: POIs describe the functions of a region (e.g., a
business district typically attracts a large volume of morning taxi
drop-offs and evening taxi pick-ups; an area with many nightclubs
has increased taxi drop-offs at night and pick-ups after midnight).
Geo-tagged tweets capture local events (e.g., a popular event will
generate peaks in drop-offs before the event and pick-ups after the
event). Extreme weather could lead to traffic decline. Vehicle col-
lisions might cause temporary road closures and traffic jams.
Our paper has three major contributions:

e We study a novel and important problem in urban computing:
understanding traffic using ubiquitous urban data.

e We investigate how to design features and models to capture the
correlations between traffic and different types of urban data.

e Our experiments show that external datasets can be helpful in
interpreting taxi traffic.

The rest of the paper is organized as follow. We review the lit-
erature in Section 2. Section 3 describes datasets and how we de-
sign features based on the properties of these datasets. Section 4
presents our model. We show the empirical results in Section 5 and
conclude our study in Section 6.

2. RELATED WORK

Traffic Prediction. Traffic prediction has been extensively studied
in transportation research area. Representative forecasting mod-
els include such as neural network models [2], autoregressive inte-
grated moving average (ARIMA) models [1], Bayesian network ap-
proach [11], and Markov Random Fields [3]. Instead of forecasting
future traffic based on historical traffic data, we aim to model the
correlation between traffic and external urban datasets. Our work
takes into consideration several large-scale urban datasets such as
POI, geo-tagged tweets, weather, and vehicle collisions and study
their impacts on traffic.

Computing with Heterogeneous Urban Data. In recent years,
urban computing [13] has gain an increasing popularity due to the
availability of large-scale urban data. These studies include using
different urban datasets such as POI, taxi, bike rental, or noise com-
plaint to profile city functions [12], detect traffic anomalies [16],
predict air quality [14, 15], gas consumption [8], location recom-
mendation [5], and use profiling [10, 9]. Our work is under the
same theme of urban computing in the context of large-scale het-
erogeneous data. To the best of our knowledge, there is no prior
work on modeling the traffic data using multiple large-scale con-
textual urban datasets.

3. DATA AND FEATURE DESIGN

Taxi Data. A large-scale New York City taxi dataset has been
made public online (http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml). The dataset contains all trips completed in yel-
low and green taxis from 2009/01/01 to 2015/12/31. Each trip con-
tains information about pick-up location and time, drop-off location
and time, trip distance, fare amount, etc. We use the subset of trips
from 2012/10/1 to 2012/12/31, which has 28,759,878 trips. On

average, there are 463,869 trips per day. We pick this time period
because it aligns with the date of collection of other external con-
text datasets. Due to the space limit, we only report the results on
taxi drop-offs in this paper.

Feature: Point-of-Interest (POI) for Regional Functions. We
collect a POI dataset from FourSquare API [4]. The FourSquare
API provides us with venue information such as venue name, cat-
egory, number of check-ins, and number of unique visitors. We
use the categorical distribution of POI to characterize the neighbor-
hood functions. There are 10 first-level categories in total, such as
food, residence, and travel. We follow the same querying strategy
as described in [9]. In total, we obtain information about 380,380
venues for New York City.

It is important to consider the popularity over time for POIs. The
time-varying popularity indicates the time span during which a re-
gion may be of interest to people. We obtain dataset of FourSquare
check-in posts from Twitter following the strategy introduced in [9].
As a result, we obtain 1,598,617 check-ins. Later, the check-ins
are aggregated by the POI category and by the hour of the day.

Formally, let C, D, and T denote the set of all categories, the set
of all spatial grid cells, and the set of all timestamps, respectively.
We consider a set of n POIs on the map: P= {py,p2,...,pn}. Each
POI p; is represented as a tuple (c,/,z), where p;.c is the category of
this POI, p;.l is its geographic location, and p;.z is the overall popu-
larity of this POI measured by the total check-ins from FourSquare
(this data is directly obtained from FourSquare API). We calculate
the POI feature value for category ¢ € C in grid cell d € D at time
t €T as:

fPOI(Cvd7[): Z Pi~Z><g(07P(f))v (1)
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where P(t) is the relative time (i.e., hour of the day) of , g(c, P(t))
is the temporal popularity of the category c at relative time of ¢.

Feature: Geo-Tagged Tweets for Local Events. The POI fea-
tures may help us capture the regular traffic patterns at locations.
To further capture irregularity in traffic, we seek to extract event
occurrences using geo-tagged tweets. Again we use the geo-tagged
tweets we collected in NYC around the same time period (from
Oct. 2012 to Dec. 2012). Each geo-tagged tweet is of the form of

(timestamp,userid, latitude,longitude, content).

Formally, we define the tweet feature value for a grid celld € D
attimer € T as:

frweer (d7 t) = C(da t)a )

where ¢(d,t) is the count of distinct users post a tweet at grid cell
d at time . We count the number of users instead of the posts to
alleviate the problem of spammers.

Feature: Weather for Disasters. Intuitively, the traffic should
correlate with weather. Furthermore, extreme weather conditions
such as hurricane and snow storm could significantly impact traf-
fic. To capture the impact of weather, we use the daily weather
dataset in USA from National Centers for Environmental Informa-
tion (http://www.ncdc.noaa.gov/). Among 28 weather attributes,
we use the highest 2-mins wind speed, highest 5-seconds wind
speed, precipitation, and snow fall information.

Formally, we define the impact of an extreme weather event e at
time ¢ (after the event) on its corresponding weather feature a as:

£, (a,t) = max{c(a,t,) — A(t —1,)%,0},1 € [to,00), 3)

where o and A are positive values controlling the decay, ¢, is the
time when event e happens, and c(a, ) is the value of weather fea-
ture (corresponding to the extreme weather event) at time #,. We



let o > 1 to capture the lasting effect of severe weather conditions,
and set f.(a,r) = 0 for t < .. Finally, we can define weather fea-
tures at time ¢ as: f,0a1er(a,1) = Yo, fe(a,t), where E, is set of
all extreme weather events related to feature a.

Feature: Vehicle Collisions for Traffic Jam. Vehicle collisions
could potentially cause traffic controls on certain blocks and thus
impact local traffic. Details of Motor Vehicle Collisions in New
York City provided by the Police Department (NYPD) and can
be accessed from NYC Open Data (https://data.cityofnewyork.us/).
This data is constantly being updated. We use data from the same
period, i.e., from Oct. 2012 to Dec. 2012.

Let R denote the set of all collisions in our study. Each collision
record r; € R is represented as a tuple (¢,/,s), where r;.f the time of
the collision, r;./ is the latitude and longitude of the collision, and
r.s is the number of people injured or killed in this collision. We
construct our feature for collisions on day ¢ in grid cell d using the
number of collisions weighted by the severity of the collisions:

fcollision(dvl) = Z (ri~s+ 1)' @

iirit=tAriled

4. MODEL

In this section, we model the correlation between traffic and ur-
ban features. For each location grid d, we denote the number of
pick-ups at time ¢ as y;. The feature space is a combination of all
the features:

X = [fpo](i,d,t), ftweet(dvt)v fweather(:vt)v fcollisiun(dvt)]‘

Here, fpp; is a 10-dimensional feature because there are 10 cat-
egories for the POIs, f;,¢er and f.,;5i0n are one-dimensional fea-
tures, and f,.45er 1S k-dimensional feature where k depends on
the number of weather attributes used. In our experiment setting,
we use wind speed, precipitation, and snow fall. Given the data
{y,,x,}ﬁv: | for alocation grid d, our goal is to fit a regression model
y = f(x) for that grid.

Linear regression is the most frequently used technique to fit the
data. But it could suffer from the overfitting issue. A common
technique to avoid overfitting is to control the values of weights w
on the features, where we add an L,-regularization to the objective
function:

J(w) = (y —Xw)" (y = Xw) + 4| w||?, (5)

where X is the N x D design matrix. In addition, the features may
have non-linear (e.g., multiplicative) interactions among them. For
example, in a bad weather day, the overall traffic volume would
decrease, but the relative traffic pattern over time (e.g., peak hours
vs. non-peak hours) remains similar, which can be described by
the temporal popularity of POIs. In this case, the traffic is deter-
mined as a combined effect of the weather feature and the POI
feature. Therefore, we further adopt the kernel ridge regression
(KRR) model [7] with a degree-2 polynomial kernel, which con-
sider the interactions between features as a multiplication of any
two features.

S. EMPIRICAL RESULTS

5.1 Quantitative Study

We divide Manhattan into 500 meter x 500 meter grids and build
amodel for each grid to predict the hourly number of taxi drop-offs.
There are 319 grids in the middle and lower area of Manhattan (i.e.,
South of 86¢4 street). Our experiments are conducted on these grids
where the data from different sources are less sparse. We use the

all | TW,.C | PT,C | PWC | PW,T
R? 064 | 007 | 063 | 0.62 | 0.61

RMSE || 24.1 | 509 | 24.1 | 23.7 | 24.1

MRE | 05 | 1.51 0.5 0.5 0.5

Table 1: Feature effectiveness. P: POIs, T: geo-tagged tweets,
W: weather, C: collision. RMSE, MRE and R? values are re-
ported for different combination of features.

first two weeks as training (from 10/01/2012 to 10/15/2012) to fit
the model and use the following week for testing (from 10/16/2012
to 10/23/2012). The average hourly drop-off frequency is 53 for
all grids and the standard deviation for hourly drop-off is 38. The
traffic also varies for different grids with the highest hourly drop-off
being 926 and lowest hourly drop-off being 0. We use mean-square
error (MSE) and mean relative error (MRE) to evaluate testing error
(on testing data) and coefficient of determination (R?) to evaluate
the fitness of the model (on training data). To study feature im-
portance, we use leave-one-out strategy, that is, testing the model
performance by excluding one feature from the feature set. Kernel
ridge regression is the model used in this experiment.

Table 1 summaries the model performance with different fea-
tures on the taxi drop-off data. Without using POI features, RMSE
is nearly two times larger than the model with POI features in-
cluded, and MRE is three times larger. Similarly, R? is 0.06 when
excluding POI features, while R? is always higher than 0.6 when
POI features are used. These results suggest that POI features cor-
relate the best with the taxi traffic data in general. At the same time,
there is no significant improvement by including weather data, col-
lision data, and tweet data. This is because traffic follows routine
behavior for most of the time, which is captured by the POI fea-
tures. Other features can describe abnormal scenarios (e.g., events
and extreme weather), but such scenarios happen less frequently or
only happen in some small regions (e.g., a convention center). In
the following section, we qualitatively investigate several regions
of interest to understand the correlation between traffic and these
features.

5.2 Qualitative Analysis

We select four regions for qualitative analysis, i.e., Times Square
(a tourist sight with entertainment related venues), Madison Square
Garden (a multi-purpose arena; a transportation center Penn Station
sits beneath MSG), 5th avenue (a central business area with many
shops), and Jacob K. Javits Convention Center (a large convention
center). We design our analysis with two questions in mind:

e QI (Fitness): Can we construct the taxi traffic patterns by
using external urban data?

o Q2 (Interpretation): Which features are useful and under what
circumstances they are useful?

To answer these two questions, we follow a similar methodology
carried out in previous study [6] and look at the fitting results of our
model on all areas.

Figure 2(a), (b), and (c) show the fitting results using our POI
features for drop-offs at Madison Square Garden, Times Square,
and 5th Avenue, respectively. For comparison, we generate 100-
dimensional features with random values and use the same kernel
ridge regression model to fit the traffic data (shown as blue dashed
line in Figure 2(a), (b), and (c)). Obviously, these random features,
although with a much higher dimension, cannot fit the traffic data
well. This demonstrates the effectiveness of our POI features in
explaining the traffic.
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Figure 2: Fitting results of traffic data using other urban data.

Geo-tagged tweets may help explain unexpected traffic patterns
where local events are the dominant source of traffic. Although
overall geo-tagged tweets do not correlate with traffic, we found
cases where traffic patterns can be attributed to ongoing events at
the venue of large events, i.e., Javits center. Figure 2(d) shows the
traffic data at Javits center during the period from 10/11/2012 to
10/13/2012, when there is large event, i.e., NYC Comic Con. It
is clear that including geo-tagged tweets significantly improve the
fitness of our model for the event days.

Intuitively, the extreme weather condition should impact the traf-
fic. Here we particularly look at one weather event occurred during
the time covered by our datasets. Hurricane Sandy is a category-
3 major hurricane that hit New York City on Oct. 29, 2012. The
wind speed attribute in our weather feature captures the signal of
this disaster. As shown in Figure 2(e), incorporating the weather
information can effectively capture the significant drop of traffic
volume during the time. By modeling the recovery time after the
disaster, the fitted traffic pattern shows a slow recovery of traffic in
the next 3 days, which aligns with the actual traffic pattern. Com-
pared with using the POI features only, it demonstrates the utility
of weather data in the presence of extreme weather conditions.

We also find collision feature does not show any significant cor-
relation with traffic. The reason could be that, wile the collisions do
affect the local traffic, its impact is subtle on the overall traffic (in
terms of number of pick-ups and drop-offs). Capturing such minor
impact using urban data still remains a challenging problem.

6. CONCLUSION

In this paper, we explore the potentials of using ubiquitous urban
datasets to interpret traffic data. We use a large-scale taxi trip data
in New York City. The explanatory urban datasets include POlIs,
geo-tagged tweets, weather, and vehicle collisions. We propose to
use kernel ridge regression to describe the non-linear non-additive
relationships of impacting factors. We demonstrate that using ubiq-
uitous urban datasets can help us better understand the urban dy-
namics, which could potentially benefit a set of applications such
as smart city and intelligent transportation system.
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